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Today’s Topics

Conditional Propositions

Logical Equivalence

Converse

Biconditional Propositions

Contrapositive
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Proof by Truth Table

Quantifiers

Universal Quantifier

Existential Quantifier

Generalized De Morgan’s Laws

Proof by Case Analysis
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• Definition
– If p and q are propositions, the proposition 

if p then q
is called a conditional proposition and denoted p  q.

– The proposition p: the hypothesis (or antecedent)
– The proposition q: the conclusion (or consequent).

• Example
– If the Mathematics Department gets an additional $40,000, 

then it will hire one new faculty member.
– p:
– q: 
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• Definition
– The truth value of the conditional proposition p 

q is defined by the following truth table.

– Note: p  q is true when both p and q are true or 
when p is false.

p q p  q

T T T

T F F

F T T

F F T
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• Assume that p is true, q is false, and r is true.

• Find the truth value of each proposition below.

(a) p  q  r

(b) p  q  r

(c) p  (q  r)

(d) p  (q  r)

• A conditional proposition that is true because 

the hypothesis is false is said to be true by 

default or vacuously true.
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• Restate each proposition below in the form of a 

conditional proposition.

– Mary will be a good student if she studies hard.

– John takes calculus only if he has sophomore, junior, 

or senior standing.

– When you sing, my ears hurt.

– A necessary condition for the Cubs to win the World 

Series is that they sign a right-handed relief pitcher.

– A sufficient condition for Maria to visit France is that 

she goes to the Eiffel Tower. 
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• We call the proposition q  p the 

converse of the proposition p  q.

p q p  q q  p

T T T T

T F F T

F T T F

F F T T
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• Definition
– If p and q are propositions, the proposition “p if and 

only if q” is called a biconditional proposition and is 

denoted p  q. It is sometimes written “p iff q”. 

– The truth value of the proposition p  q is defined by 

the following truth table.

p q p  q (p  q)  (q  p)

T T T T

T F F F

F T F F

F F T T
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• An alternative way to state “p if and only if 

q” is “p is a necessary and sufficient 

condition for q.”

• Example

– 1 < 5 if and only if 2 < 8.

– An alternative way to state it is: 

• A necessary and sufficient condition for 1 < 5 is 2 

< 8. 



• Definition

– Suppose that the propositions P and Q are 

made up of the propositions p1, …, pn. 

– We say that P and Q are logically equivalent

and write P  Q, provided that, given any 

truth values of p1, …, pn, either P and Q are 

both true, or P and Q are both false. 
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• Definition

– p  q is logically equivalent to p  q
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p q p  q p  q

T T T T

T F F F

F T T T

F F T T



• Examples
– Verify the first of De Morgan’s laws

• (p  q)  p  q

• (p  q)  p  q

– Show that the negation of p  q is logically 

equivalent to p  q.

– What is the negation of the proposition “If Jerry 

receives a scholarship, then he goes to college” in 

words?

– Is p  q logically equivalent to (p  q)  (q  p)?
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• Definition
– The contrapositive (or transposition) of the conditional 

proposition p  q is  q  p. 

• Theorem
– The conditional proposition and its contrapositive are 

logically equivalent. 

– Proof.
p q p  q q  p

T T T T

T F F F

F T T T

F F T T
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• Example
– Let p: n is an odd integer.

– Is p a proposition? 

• Definition
– Let P(x) be a statement involving the variable 

x and let D be a set. 

– We call P a propositional function or predicate
(with respect to D) if for each x in D, P(x) is a 
proposition. 

– We call D the domain of discourse of P.
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• Example

– Let P(n) be the statement 

n is an odd integer, 

and let D be the set of positive integers. 

– Then P is a propositional function with 

domain of discourse D since for each n in D, 

P(n) is a proposition. 
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• Are any of the following propositional 
functions?
– n2 + 2n is an odd integer 

(domain of discourse = set of positive integers).

– x2 – x – 6 = 0 

(domain of discourse = set of real numbers).

– The baseball player hit over .300 in 2003 

(domain of discourse = set of baseball players).

– The restaurant rated over two stars in Chicago
magazine

(domain of discourse = restaurants rated in 
Chicago magazine).
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• Definition
– Let P be a propositional function with domain of 

discourse D. 

– The statement “for every x, P(x)” is said to be a 
universally quantified statement.

– The symbol  means “for every” in the statement “x
P(x)”.

– The statement x P(x) is true if P(x) is true for every
x in D. 

– The statement x P(x) is false if P(x) is false for at 
least one x in D. 

– A value x in the domain of discourse that makes P(x) 
false is called a counterexample to the statement x
P(x).
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• Example
– Consider the universally quantified statement x(x2  0) 

with domain of discourse the set of real numbers. 

– The statement is true because, for every real number x, it 

is true that the square of x is positive or zero. 

• Variables
– We call the variable x in the propositional function P(x) a 

free variable. We call the variable x in the universally 

quantified statement x P(x) a bound variable.

– Note: A statement with free variables is not a proposition, 

and a statement with no free variables is a proposition.
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• Show that the universally quantified 
statement “for every real number x, if x > 1, 
then x + 1 > 1” is true. 
– Proof.

• Let x be any real number. It is true that for any real 
number x, either x  1 or x > 1. If x  1, the conditional 
proposition is vacuously true. 

• Now suppose that x > 1. Regardless of the specific 
value of x, x + 1 > x. Since x + 1 > x and x > 1, we 
conclude that x + 1 > 1, so the conclusion is true. If x > 
1, the hypothesis and conclusion are both true hence 
the conditional proposition is true.

• We have shown that for every real number x, the 
proposition “if x > 1, then x + 1 > 1” is true. 

• Therefore, the universally quantified statement is true.
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• Definition
– Let P be a propositional function with domain of 

discourse D. 

– The statement “there exists x, P(x)” is said to be 
an existentially quantified statement. 

– The symbol  means “there exists,” and is called 
an existential quantifier. 

– The statement x P(x) is true if P(x) is true for at 
least one x in D. The statement x P(x) is false if 
P(x) is false for every x in D. 

– Note: The existentially quantified statement x
P(x) is false if for every x in the domain of 
discourse, the proposition P(x) is false.
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• Show that the existentially quantified statement

x ( 1/(x2 + 1) > 1)

is false. 

• Proof sketch.

– We must show that 1/(x2 + 1) > 1 is false for every 
real number x. Since 1/(x2 + 1) > 1 is false precisely 
when 1/(x2 + 1)  1 is true, we must show that 1/(x2 + 
1)  1 is true for every real number x.

– Let x be any real number. Since 0  x2, we obtain 1 
x2 + 1. If we divide both sides of this last inequality by 
x2 + 1, we obtain 1/(x2 + 1)  1. 
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• Theorem
– If P is a propositional function, each pair of 

propositions in (a) and (b) has the same truth values.

(a) (x P(x)); x P(x)

(b) (x P(x)); x P(x) 

– Proof.

• Exercise
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