Today's Topics
- Conditional Propositions
- Logical Equivalence
- Converse
- Biconditional Propositions
- Contrapositive

Proof by Truth Table
- Quantifiers
- Universal Quantifier
- Existential Quantifier
- Generalized De Morgan's Laws
- Proof by Case Analysis

Logic and Proofs
Conditional Propositions and Logical Equivalence

• Definition
 – If \(p \) and \(q \) are propositions, the proposition
 \[
 \text{if } p \text{ then } q
 \]
 is called a conditional proposition and denoted \(p \rightarrow q \).
 – The proposition \(p \): the hypothesis (or antecedent)
 – The proposition \(q \): the conclusion (or consequent).

• Example
 – If the Mathematics Department gets an additional $40,000,
 then it will hire one new faculty member.
 – \(p \):
 – \(q \):
Conditional Propositions

• Definition
 – The truth value of the conditional proposition \(p \rightarrow q \) is defined by the following truth table.

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

– Note: \(p \rightarrow q \) is true when both \(p \) and \(q \) are true or when \(p \) is false.
Example

- Assume that p is true, q is false, and r is true.
- Find the truth value of each proposition below.

 (a) $p \land q \rightarrow r$

 (b) $p \lor q \rightarrow \neg r$

 (c) $p \land (q \rightarrow r)$

 (d) $p \rightarrow (q \rightarrow r)$

- A conditional proposition that is true because the hypothesis is false is said to be true by default or vacuously true.
Example

• Restate each proposition below in the form of a conditional proposition.
 – Mary will be a good student if she studies hard.
 – John takes calculus only if he has sophomore, junior, or senior standing.
 – When you sing, my ears hurt.
 – A necessary condition for the Cubs to win the World Series is that they sign a right-handed relief pitcher.
 – A sufficient condition for Maria to visit France is that she goes to the Eiffel Tower.
We call the proposition $q \rightarrow p$ the converse of the proposition $p \rightarrow q$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$q \rightarrow p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Biconditional Proposition

• Definition
 – If p and q are propositions, the proposition “p if and only if q” is called a **biconditional** proposition and is denoted $p \iff q$. It is sometimes written “p iff q”.
 – The truth value of the proposition $p \iff q$ is defined by the following truth table.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \iff q$</th>
<th>$(p \rightarrow q) \land (q \rightarrow p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
An alternative way to state “p if and only if q” is “p is a necessary and sufficient condition for q.”

Example

- $1 < 5$ if and only if $2 < 8$.
- An alternative way to state it is:
 - A necessary and sufficient condition for $1 < 5$ is $2 < 8$.
• Definition
 – Suppose that the propositions P and Q are made up of the propositions p_1, \ldots, p_n.
 – We say that P and Q are logically equivalent and write $P \equiv Q$, provided that, given any truth values of p_1, \ldots, p_n, either P and Q are both true, or P and Q are both false.
Logical Equivalence

- **Definition**

 \(\neg p \lor q \) is *logically equivalent* to \(p \rightarrow q \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\neg p \lor q)</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Logical Equivalence

Examples

- Verify the first of De Morgan’s laws
 - \(\neg(p \lor q) \equiv \neg p \land \neg q \)
 - \(\neg(p \land q) \equiv \neg p \lor \neg q \)
- Show that the negation of \(p \rightarrow q \) is logically equivalent to \(p \land \neg q \).
- What is the negation of the proposition “If Jerry receives a scholarship, then he goes to college” in words?
- Is \(p \iff q \) logically equivalent to \((p \rightarrow q) \land (q \rightarrow p) \)?
• **Definition**
 - The *contrapositive* (or *transposition*) of the conditional proposition $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

• **Theorem**
 - The conditional proposition and its contrapositive are logically equivalent.

 - **Proof.**

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
<th>$\neg q \rightarrow \neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Quantifiers

• Example
 – Let p: n is an odd integer.
 – Is p a proposition?

• Definition
 – Let $P(x)$ be a statement involving the variable x and let D be a set.
 – We call P a propositional function or predicate (with respect to D) if for each x in D, $P(x)$ is a proposition.
 – We call D the domain of discourse of P.
Quantifiers

• Example
 – Let $P(n)$ be the statement

 n is an odd integer,

 and let D be the set of positive integers.
 – Then P is a propositional function with
 domain of discourse D since for each n in D,
 $P(n)$ is a proposition.
Quantifiers

• Are any of the following propositional functions?
 – $n^2 + 2n$ is an odd integer
 (domain of discourse = set of positive integers).
 – $x^2 - x - 6 = 0$
 (domain of discourse = set of real numbers).
 – The baseball player hit over .300 in 2003
 (domain of discourse = set of baseball players).
 – The restaurant rated over two stars in *Chicago* magazine
 (domain of discourse = restaurants rated in *Chicago* magazine).
Definition

- Let P be a propositional function with domain of discourse D.
- The statement “for every x, $P(x)$” is said to be a universally quantified statement.
- The symbol \forall means “for every” in the statement “$\forall x \ P(x)$”.
- The statement $\forall x \ P(x)$ is true if $P(x)$ is true for every x in D.
- The statement $\forall x \ P(x)$ is false if $P(x)$ is false for at least one x in D.
- A value x in the domain of discourse that makes $P(x)$ false is called a counterexample to the statement $\forall x \ P(x)$.
Universal Quantifier

• Example
 – Consider the universally quantified statement $\forall x(x^2 \geq 0)$ with domain of discourse the set of real numbers.
 – The statement is true because, *for every* real number x, it is true that the square of x is positive or zero.

• Variables
 – We call the variable x in the propositional function $P(x)$ a free variable. We call the variable x in the universally quantified statement $\forall x P(x)$ a bound variable.
 – Note: A statement with free variables is not a proposition, and a statement with no free variables is a proposition.
Show that the universally quantified statement “for every real number x, if $x > 1$, then $x + 1 > 1$” is true.

Proof.

- Let x be any real number. It is true that for any real number x, either $x \leq 1$ or $x > 1$. If $x \leq 1$, the conditional proposition is vacuously true.
- Now suppose that $x > 1$. Regardless of the specific value of x, $x + 1 > x$. Since $x + 1 > x$ and $x > 1$, we conclude that $x + 1 > 1$, so the conclusion is true. If $x > 1$, the hypothesis and conclusion are both true hence the conditional proposition is true.
- We have shown that for every real number x, the proposition “if $x > 1$, then $x + 1 > 1$” is true.
- Therefore, the universally quantified statement is true.
• **Definition**
 - Let P be a propositional function with domain of discourse D.
 - The statement “there exists x, $P(x)$” is said to be an **existentially quantified statement**.
 - The symbol \exists means “there exists,” and is called an existential quantifier.
 - The statement $\exists x P(x)$ is true if $P(x)$ is true for at least one x in D. The statement $\exists x P(x)$ is false if $P(x)$ is false for every x in D.
 - **Note:** The existentially quantified statement $\exists x P(x)$ is false if for every x in the domain of discourse, the proposition $P(x)$ is false.
• Show that the existentially quantified statement
\[\exists x \ (\frac{1}{x^2 + 1} > 1) \]
is false.

• Proof sketch.
 – We must show that \(\frac{1}{x^2 + 1} > 1 \) is false for every real number \(x \). Since \(\frac{1}{x^2 + 1} > 1 \) is false precisely when \(\frac{1}{x^2 + 1} \leq 1 \) is true, we must show that \(\frac{1}{x^2 + 1} \leq 1 \) is true for every real number \(x \).
 – Let \(x \) be any real number. Since \(0 \leq x^2 \), we obtain \(1 \leq x^2 + 1 \). If we divide both sides of this last inequality by \(x^2 + 1 \), we obtain \(\frac{1}{x^2 + 1} \leq 1 \).
Generalized De Morgan’s Laws for Logic

• Theorem
 – If P is a propositional function, each pair of propositions in (a) and (b) has the same truth values.

 (a) $\neg(\forall x \ P(x))$; $\exists x \ \neg P(x)$

 (b) $\neg(\exists x \ P(x))$; $\forall x \ \neg P(x)$

 – Proof.

• Exercise
Summary

- Conditional Propositions
- Logical Equivalence
- Necessary Condition
- Sufficient Condition
- Converse
- Biconditional Propositions
- Contrapositive
- Proof by Truth Table
- Quantifiers
- Universal Quantifier
- Existential Quantifier
- Generalized De Morgan’s Laws