- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics
 Conditional Propositions Logical Equivalence
 Converse
 Biconditional Propositions Contrapositive
 \author{ Generalized De Morgan's Laws

 Proof by Truth Table
 Quantifiers
 Universal Quantifier
 Existential Quantifier
 Proof by Case Analysis
 -の○○ ○
 Logic and Proofs}
Conditional Propositions and Logical Equivalence

- Definition
- If p and q are propositions, the proposition if p then q
is called a conditional proposition and denoted $p \rightarrow q$.
- The proposition p : the hypothesis (or antecedent)
- The proposition q : the conclusion (or consequent).
- Example
- If the Mathematics Department gets an additional \$40,000, then it will hire one new faculty member.
- p :
- q :

Conditional Propositions

- Definition
- The truth value of the conditional proposition $p \rightarrow$ q is defined by the following truth table.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

- Note: $p \rightarrow q$ is true when both p and q are true or when p is false.

Example

- Assume that p is true, q is false, and r is true.
- Find the truth value of each proposition below.
(a) $p \wedge q \rightarrow r$
(b) $p \vee q \rightarrow \neg r$
(c) $p \wedge(q \rightarrow r)$
(d) $p \rightarrow(q \rightarrow r)$
- A conditional proposition that is true because the hypothesis is false is said to be true by default or vacuously true.

Example

- Restate each proposition below in the form of a conditional proposition.
- Mary will be a good student if she studies hard.
- John takes calculus only if he has sophomore, junior, or senior standing.
- When you sing, my ears hurt.
- A necessary condition for the Cubs to win the World Series is that they sign a right-handed relief pitcher.
- A sufficient condition for Maria to visit France is that she goes to the Eiffel Tower.

Converse

- We call the proposition $q \rightarrow p$ the converse of the proposition $p \rightarrow q$.

p	q	$p \rightarrow q$	$q \rightarrow p$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

Biconditional Proposition

- Definition
- If p and q are propositions, the proposition " p if and only if q " is called a biconditional proposition and is denoted $p \leftrightarrow q$. It is sometimes written " p iff q ".
- The truth value of the proposition $p \leftrightarrow q$ is defined by the following truth table.

p	q	$p \leftrightarrow q$	$(p \rightarrow q) \wedge(q \rightarrow p)$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	T	T

Biconditional Proposition

- An alternative way to state "p if and only if q " is " p is a necessary and sufficient condition for q."
- Example
$-1<5$ if and only if $2<8$.
- An alternative way to state it is:
- A necessary and sufficient condition for $1<5$ is 2 < 8 .

Logical Equivalence

- Definition
- Suppose that the propositions P and Q are made up of the propositions p_{1}, \ldots, p_{n}.
- We say that P and Q are logically equivalent and write $P \equiv Q$, provided that, given any truth values of p_{1}, \ldots, p_{n}, either P and Q are both true, or P and Q are both false.

Logical Equivalence

- Definition
- $-p \vee q$ is logically equivalent to $p \rightarrow q$

p	q	$\neg p \vee q$	$p \rightarrow q$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

Logical Equivalence

- Examples
- Verify the first of De Morgan's laws
- $\neg(p \vee q) \equiv \neg p \wedge \neg q$
- $\neg(p \wedge q) \equiv \neg p \vee \neg q$
- Show that the negation of $p \rightarrow q$ is logically equivalent to $p \wedge \neg q$.
- What is the negation of the proposition "If Jerry receives a scholarship, then he goes to college" in words?
- Is $p \leftrightarrow q$ logically equivalent to $(p \rightarrow q) \wedge(q \rightarrow p) ?$

Contrapositive

- Definition
- The contrapositive (or transposition) of the conditional proposition $p \rightarrow q$ is $\neg q \rightarrow \neg p$.
- Theorem
- The conditional proposition and its contrapositive are logically equivalent.
- Proof.

p	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

Quantifiers

- Example
- Let $p: n$ is an odd integer.
- Is p a proposition?
- Definition
- Let $P(x)$ be a statement involving the variable x and let D be a set.
- We call P a propositional function or predicate (with respect to D) if for each x in $D, P(x)$ is a proposition.
- We call D the domain of discourse of P.

Quantifiers

- Example
- Let $P(n)$ be the statement
n is an odd integer,
and let D be the set of positive integers.
- Then P is a propositional function with domain of discourse D since for each n in D, $P(n)$ is a proposition.

Quantifiers

- Are any of the following propositional functions?
$-n^{2}+2 n$ is an odd integer (domain of discourse $=$ set of positive integers).
$-x^{2}-x-6=0$
(domain of discourse = set of real numbers).
- The baseball player hit over . 300 in 2003 (domain of discourse = set of baseball players).
- The restaurant rated over two stars in Chicago magazine
(domain of discourse = restaurants rated in Chicago magazine).

Universal Quantifier

- Definition
- Let P be a propositional function with domain of discourse D.
- The statement "for every $x, P(x)$ " is said to be a universally quantified statement.
- The symbol \forall means "for every" in the statement " $\forall x$ $P(x)^{\prime \prime}$.
- The statement $\forall x P(x)$ is true if $P(x)$ is true for every x in D.
- The statement $\forall x P(x)$ is false if $P(x)$ is false for at least one x in D.
- A value x in the domain of discourse that makes $P(x)$ false is called a counterexample to the statement $\forall x$ $P(x)$.

Universal Quantifier

- Example
- Consider the universally quantified statement $\forall x\left(x^{2} \geq 0\right)$ with domain of discourse the set of real numbers.
- The statement is true because, for every real number x, it is true that the square of x is positive or zero.
- Variables
- We call the variable x in the propositional function $P(x)$ a free variable. We call the variable x in the universally quantified statement $\forall x P(x)$ a bound variable.
- Note: A statement with free variables is not a proposition, and a statement with no free variables is a proposition.

Universal Quantifier

- Show that the universally quantified statement "for every real number x, if $x>1$, then $x+1>1$ " is true.
- Proof.
- Let x be any real number. It is true that for any real number x, either $x \leq 1$ or $x>1$. If $x \leq 1$, the conditional proposition is vacuously true.
- Now suppose that $x>1$. Regardless of the specific value of $x, x+1>x$. Since $x+1>x$ and $x>1$, we conclude that $x+1>1$, so the conclusion is true. If $x>$ 1 , the hypothesis and conclusion are both true hence the conditional proposition is true.
- We have shown that for every real number x, the proposition "if $x>1$, then $x+1>1$ " is true.
- Therefore, the universally quantified statement is true.

Existential Quantifier

- Definition
- Let P be a propositional function with domain of discourse D.
- The statement "there exists $x, P(x)$ " is said to be an existentially quantified statement.
- The symbol \exists means "there exists," and is called an existential quantifier.
- The statement $\exists x P(x)$ is true if $P(x)$ is true for at least one x in D. The statement $\exists x P(x)$ is false if $P(x)$ is false for every x in D.
- Note: The existentially quantified statement $\exists x$ $P(x)$ is false if for every x in the domain of discourse, the proposition $P(x)$ is false.

Existential Quantifier

- Show that the existentially quantified statement

$$
\exists x\left(1 /\left(x^{2}+1\right)>1\right)
$$

is false.

- Proof sketch.
- We must show that $1 /\left(x^{2}+1\right)>1$ is false for every real number x. Since $1 /\left(x^{2}+1\right)>1$ is false precisely when $1 /\left(x^{2}+1\right) \leq 1$ is true, we must show that $1 /\left(x^{2}+\right.$ $1) \leq 1$ is true for every real number x.
- Let x be any real number. Since $0 \leq x^{2}$, we obtain $1 \leq$ $x^{2}+1$. If we divide both sides of this last inequality by $x^{2}+1$, we obtain $1 /\left(x^{2}+1\right) \leq 1$.

Generalized De Morgan's Laws for
 - Theorem Logic

- If P is a propositional function, each pair of propositions in (a) and (b) has the same truth values.
(a) $\neg(\forall x P(x)) ; \exists x \neg P(x)$
(b) $\neg(\exists x P(x)) ; \forall x \neg P(x)$
- Proof.
- Exercise

Summary

- Conditional Propositions
- Logical Equivalence
- Necessary Condition
- Sufficient Condition
- Converse
- Biconditional Propositions
- Contrapositive
- Proof by Truth Table
- Quantifiers
- Universal Quantifier
- Existential Quantifier
- Generalized De Morgan's Laws

