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Today's Topics ~ Proof by Truth Table

Conditional Propositions Quantifiers
Logical Equivalence Universal Quantifier
Converse Existential Quantifier
Biconditional Propositions Generalized De Morgan’s Laws
Contrapositive Proof by Case Analysis
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Conditional Propositions and

Logical Equivalence
* Definition
— If p and g are propositions, the proposition
If p then g
Is called a conditional proposition and denoted p — g.

— The proposition p: the hypothesis (or antecedent)
— The proposition g: the conclusion (or conseguent).

« Example

— If the Mathematics Department gets an additional $40,000,
then it will hire one new faculty member.
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Conditional Propositions

o Definition

— The truth value of the conditional
g is defined by the following truth

?ro osition p —
able.

P9} P
TofT T
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— Note: p — g Is true when both p and g are true or

when p is false.
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Example

« Assume that p is true, q Is false, and r Is true.
* Find the truth value of each proposition below.

(@) prg-r
(b) pvg—-r
(©)pA@—T)
(dp—->@-r)
A conditional proposition that is true because
the hypothesis is false Is said to be true by
default or vacuously true.
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Example

« Restate each proposition below in the form of a
conditional proposition.
— Mary will be a good student if she studies hard.

— John takes calculus only if he has sophomore, junior,
or senior standing.

— When you sing, my ears hurt.

— A necessary condition for the Cubs to win the World
Series is that they sign a right-handed relief pitcher.

— A sufficient condition for Maria to visit France is that
she goes to the Eiffel Tower.
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Converse

» We call the proposition g - p the

converse of the proposition p - d.
p q P—>q | gop
T T T T
T F = T
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Biconditional Proposition

* Definition
— If p and g are propositions, the proposition “p if and
only if @” Is called a biconditional proposition and is
denoted p <> Q. It is sometimes written “p Iff q".

— The truth value of the proposition p <> g is defined by
the following truth table.

p q p<q | (pP—~>q) A(Q—>p)
T T T T
7 = = =
= T = =
= = T T
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Biconditional Proposition

* An alternative way to state “p if and only If
g’ is “p is a necessary and sufficient
condition for g.”

« Example
—1<5ifandonlyif 2 < 8.

— An alternative way to state it Is:

« A necessary and sufficient condition for 1 <5is 2
< 8.
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Logical Equivalence

* Definition
— Suppose that the propositions P and Q are
made up of the propositions py, ..., P,

— We say that P and Q are logically equivalent
and write P = Q, provided that, given any
truth values of p,, ..., p,, either P and Q are
both true, or P and Q are both false.
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Logical Equivalence

* Definition
- -p v qis logically equivalentto p —> g

p g —pvq p—q
T T T T
T F F =
= T T T
= F T T
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Logical Equivalence

 Examples

— Verity the first of De Morgan’s laws
*=(pva)=—-pA—Q
*—~(pAQ)=—pVv—Q

— Show that the negation of p — ¢ is logically

equivalent to p A —qQ.

— What is the negation of the proposition “If Jerry
receives a scholarship, then he goes to college” in
words?

— Is p <> g logically equivalentto (p - g) A (0 - p)?
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Contrapositive

 Definition
— The contrapositive (or transposition) of the conditional
proposition p —> g is —q — —p.

e Theorem

— The conditional proposition and its contrapositive are
logically equivalent.

— Proof.
p q p—¢ —0 — —p
T T T i
il = = =
= T T i
= = T T
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Quantifiers

« Example
— Let p: n is an odd integer.
— Is p a proposition?
 Definition
— Let P(x) be a statement involving the variable
x and let D be a set.

— We call P a propositional function or predicate
(with respect to D) if for each x in D, P(x) is a
proposition.

— We call D the domain of discourse of P.
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Quantifiers

« Example
— Let P(n) be the statement
n is an odd integer,
and let D be the set of positive integers.

— Then P Is a propositional function with
domain of discourse D since for each n in D,
P(n) is a proposition.
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Quantifiers

» Are any of the following propositional
functions?
— NnZ + 2n is an odd integer
(domain of discourse = set of positive integers).
—X?2=-xXx—-6=0
(domain of discourse = set of real numbers).
— The baseball player hit over .300 in 2003
(domain of discourse = set of baseball players).

— The restaurant rated over two stars in Chicago
magazine

(domain of discourse = restaurants rated in
Chicago magazine).
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Universal Quantifier

 Definition
— Let P be a propositional function with domain of
discourse D.

— The statement “for every x, P(x)" is said to be a
universally quantified statement.

— The symbol V means “for every” in the statement “Vvx
P(x)".

— The statement Vx P(X) Is true if P(x) is true for every
X in D.

— The statement Vx P(X) is false if P(x) is false for at
least one x in D.

— Avalue x in the domain of discourse that makes P(x)
false is called a counterexample to the statement vx
P(X).
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Universal Quantifier

« Example

— Consider the universally quantified statement Vx(x? > 0)
with domain of discourse the set of real numbers.

— The statement is true because, for every real number X, it
IS true that the square of x is positive or zero.

 Variables

— We call the variable x in the propositional function P(x) a
free variable. We call the variable x in the universally
guantified statement vx P(x) a bound variable.

— Note: A statement with free variables is not a proposition,
and a statement with no free variables is a proposition.
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— Proof.

Universal Quantifier

» Show that the universally quantified
statement “for every real number X, if x > 1,
thenx + 1> 1"Is true.

* Let x be any real number. It is true that for any real
number X, eitherx <1 or x> 1. If x < 1, the conditional
proposition is vacuously true.

« Now suppose that x > 1. Regardless of the specific
value of X, x+1>x.Sincex+1>xand x> 1, we
conclude that x + 1 > 1, so the conclusion is true. If x >
1, the hypothesis and conclusion are both true hence
the conditional proposition is true.

« We have shown that for every real number x, the
proposition “if x > 1, then x+ 1 > 17 is true.

* Therefore, the universally quantified statement is true.
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Existential Quantifier

 Definition
— Let P be a propositional function with domain of
discourse D.

— The statement “"there exists x, P(x)" is said to be
an existentially quantified statement.

— The symbol 3 means “there exists,” and is called
an existential quantifier.

— The statement 3Ix P(X) Is true if P(x) Is true for at
east one x in D. The statement Ix P(x) is false if
P(X) Is false for every x in D.

— Note: The existentially quantified statement 3x
P(X) Is false If for every x in the domain of
discourse, the proposition P(x) Is false.
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Existential Quantifier

« Show that the existentially quantified statement
Ix (/x> +1)>1)
IS false.

 Proof sketch.

— We must show that 1/(x? + 1) > 1 is false for every
real number x. Since 1/(x? + 1) > 1 is false precisely
when 1/(x? + 1) < 1 is true, we must show that 1/(x? +
1) <1 is true for every real number x.

— Let x be any real number. Since 0 < x?, we obtain 1 <
x? + 1. If we divide both sides of this last inequality by
X%+ 1, we obtain 1/(x? + 1) < 1.
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Generalized De Morgan’s Laws for
* Theorem Logic

— If P Is a propositional function, each pair of
propositions in (a) and (b) has the same truth values.

(@) =(Vx P(X)); 3x =P(x)
(b) —=(3x P(x)); VX —=P(x)

— Proof.

 Exercise
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Summary

« Conditional
Propositions

 Logical Equivalence
* Necessary Condition
 Sufficient Condition
« Converse

* Biconditional
Propositions

Contrapositive

Proof by Truth Table
Quantifiers

Universal Quantifier
Existential Quantifier

Generalized De
Morgan’s Laws
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