- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics

Mathematical Induction
Strong Form of Induction and the Well-Ordering Property

00.0 •

Logic and Proofs

Mathematical Induction

- Motivating Example
- Suppose that a sequence of blocks numbered 1, 2, ... sits on an (infinitely) long table and that some blocks are marked with an " X ".
- Suppose further that
(a) the first block is marked; and
(b) for all n, if block n is marked, then block $n+1$ is also marked.
- We claim that the statements (a) and (b) imply that every block is marked.

Mathematical Induction

- Another Example
- Let S_{n} denote the sum of the first n positive integers:

$$
S_{n}=1+2+\ldots+n .
$$

- Suppose that someone claims that

$$
S_{n}=n(n+1) / 2 \text { for all } n \geq 1 .
$$

- To prove this claim, we show that for all n, if equation n is true, then equation $n+1$ is also true.
- We may use a direct proof.
- We conclude that all of the equations are true.

Mathematical Induction

- Principle of Mathematical Induction
- Suppose that we have a propositional function $S(n)$ whose domain of discourse is the set of positive integers.
- Suppose that

$$
\begin{aligned}
& S(1) \text { is true; : Basis Step } \\
& \text { for all } n \geq 1 \text {, if } S(n) \text { is true, then } \\
& S(n+1) \text { is true. }
\end{aligned}
$$

- Then $S(n)$ is true for every positive integer n.

Mathematical Induction

- Definition
- n factorial is defined as

$$
\begin{array}{ll}
n!=1 & \text { if } n=0 \\
n(n-1)(n-2) \cdots 2 \cdot 1 & \text { if } n \geq 1
\end{array}
$$

- That is, if $n \geq 1, n$! is equal to the product of all the integers between 1 and n inclusive.
- As a special case, 0 ! is defined to be 1.

Mathematical Induction

- Example
- Use induction to show that $n!\geq 2^{n-1}$ for all $n \geq 1$.
- Proof sketch.
- Basis Step
- We must show that the inequality holds if $n=1$.
- Inductive Step
- We assume that the inequality holds for n; that is, we assume that $n!\geq 2^{n-1}$ is true.
- We must then prove that the inequality holds for $n+1$; that is, we must prove that $(n+1)!\geq 2^{n}$ holds.
- Since the Basis Step and the Inductive Step have been verified, the Principle of Mathematical Induction tells us that the inequality holds for every positive integer n.

Mathematical Induction

- Example
- If we want to verify that the statements

$$
S\left(n_{0}\right), S\left(n_{0}+1\right), \ldots,
$$

where $n_{0} \neq 1$, are true, we must change the Basis Step to $S\left(n_{0}\right)$ is true.

- The Inductive Step then becomes
for all $n \geq n_{0}$, if $S(n)$ is true, then $S(n+1)$ is true.

Mathematical Induction

- Example
- Geometric Sum
- Use induction to show that if $r \neq 1$,

$$
a+a r^{1}+a r^{2}+\ldots+a r^{n}=a\left(r^{n+1}-1\right) /(r-1)
$$ for all $n \geq 0$.

- Proof.
- exercise
- Use induction to show that $5^{n}-1$ is divisible by 4 for all $n \geq 1$.
- Proof.
- exercise

Strong Form of Induction and the Well-Ordering Property

- Strong Form of Mathematical Induction
- Suppose that we have a propositional function $S(n)$ whose domain of discourse is the set of integers greater than or equal to n_{0}.
- Suppose that
$S\left(n_{0}\right)$ is true;
for all $n>n_{0}$, if $S(k)$ is true for all k,
$n_{0} \leq k<n$, then $S(n)$ is true.
- Then $S(n)$ is true for every integer $n \geq n_{0}$.
- Show that the two forms of mathematical induction are logically equivalent.

Strong Form of Induction

- Example
- Use mathematical induction to show that postage of four cents or more can be achieved by using only 2 -cent and 5 -cent stamps.
- Proof.
- exercise
- Example
- Suppose that the sequence c_{1}, c_{2}, \ldots is defined by the equations $c_{1}=0, c_{n}=q_{n / 2\rfloor}+n$ for all $n>1$.
- Use strong induction to prove that $c_{n}<4 n$ for all n ≥ 1.
- Proof.
- exercise

Well-Ordering Property

- The Well-Ordering Property for nonnegative integers states that every nonempty set of nonnegative integers has a least element.
- Show that this property is equivalent to the two forms of induction.

Today's Topics
Sets

- © © ©

The Language of Mathematics

Sets

- A set is a collection of objects (elements, members).
- Examples
- $A=\{1,2,3,4\}=\{1,3,4,2\}=\{1,2,2,3,4\}$
- $\mathrm{B}=\{x \mid x$ is a positive, even integer $\}$
- Cardinality
- If X is a finite set, we let $|X|=$ number of elements in X.
- Membership
- If x is in the set X, we write $x \in X$, and if x is not in X, we write $x \notin X$.

Sets

- Empty Set
- The set with no elements is called the empty (null, void) set and is denoted \varnothing. Thus $\varnothing=\{ \}$.
- Equality
- Two sets X and Y are equal, notated as $X=Y$, if X and Y have the same elements. In symbols, X $=Y$ iff $\forall x((x \in X \rightarrow x \in Y \wedge(x \in Y \rightarrow x \in X)$).
- Example
- Prove that if $A=\left\{x \mid x^{2}+x-6=0\right\}$ and $B=\{2$, $3\}$, then $A=B$.

Sets

- Subset
- Suppose that X and Y are sets. If every element of X is an element of Y, we say that X is a subset of Y, written as $X \subseteq Y$. In symbols, X is a subset of Y if $\forall x(x \in X \rightarrow x \in Y$.
- Examples
- If $C=\{1,3\}$ and $A=\{1,2,3,4\}$, then $C \subseteq A$.
- Show that $X \subseteq Y$, where $X=\left\{x \mid x^{2}+x-2=0\right\}, Y$ $=$ set of integers, and the domain of discourse is the set of real numbers.
- Show that if $X=\left\{x \mid 3 x^{2}-x-2=0\right\}$ and $Y=$ set of integers, X is not a subset of Y.

Sets

- Proper Subset
- If X is a subset of Y and X does not equal Y, we say that X is a proper subset of Y and write $X \subset Y$.
- Power Set
- The set of all subsets (proper or not) of a set X, denoted $\wp(X)$, is called the power set of X.
- Example
- If $A=\{a, b, c\}$, the members of $\wp(A)$ are $\varnothing,\{a\},\{b\},\{c\}$, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. All but $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ are proper subsets of A.
- For this example, $|A|=3,|\wp(A)|=2^{3}=8$.
- Show that if $|X|=n$, then $|\wp(X)|=2^{n}$.
- Proof.
- By induction on n.

Sets

- Union
- Given two sets X and Y, the set $X \cup Y=\{x \mid x \in$ X or $X \in Y$ is called the union of X and Y.
- Intersection
- The set $X \cap Y=\{x \mid X \in X$ and $x \in Y$ is called the intersection of X and Y.
- Difference
- The set $X-Y=\{x \mid x \in X$ and $X \notin Y\}$ is called the difference (or relative complement).
- Disjoint
- Sets X and Y are disjoint if $X \cap Y=\varnothing$.
- A collection of sets S is said to be pairwise disjoint if whenever X and Y are distinct sets in S, X and Y are disjoint.

Sets

- Universe
- Sometimes we are dealing with sets, all of which are subsets of a set U. This set U is called a universal set or a universe. The set U must be explicitly given or inferred from the context.
- Given a universal set U and a subset X of U, the set $U-X$ is called the complement of X and is written X^{C}.
- Venn diagrams
- Venn diagrams provide pictorial views of sets. In a Venn diagram, a rectangle depicts a universal set. Subsets of the universal set are drawn as circles. The inside of a circle represents the members of that set.

Summary

- Mathematical Induction
- Strong Form of Induction and the Well-Ordering
Property
- Sets

