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• Motivating Example

– Suppose that a sequence of blocks 
numbered 1, 2, ... sits on an (infinitely) long 
table and that some blocks are marked with 
an “X”.

– Suppose further that 
(a) the first block is marked; and

(b) for all n, if block n is marked, then block n+1 is 
also marked.

– We claim that the statements (a) and (b) 
imply that every block is marked.
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• Another Example

– Let Sn denote the sum of the first n positive 
integers: 

Sn = 1 + 2 + ... + n.

– Suppose that someone claims that 

Sn = n(n + 1)/2 for all n  1.

– To prove this claim, we show that for all n, if 
equation n is true, then equation n + 1 is also true. 

• We may use a direct proof.

– We conclude that all of the equations are true.
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• Principle of Mathematical Induction

– Suppose that we have a propositional 

function S(n) whose domain of discourse is 

the set of positive integers.

– Suppose that 

S(1) is true; 

for all n  1, if S(n) is true, then 

S(n + 1) is true. 

– Then S(n) is true for every positive integer n.

Basis Step

Inductive Step
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• Definition

– n factorial is defined as 

n! = 1 if n = 0, 

n(n – 1)(n – 2)···2·1 if n  1. 

– That is, if n  1, n! is equal to the product of 

all the integers between 1 and n inclusive.

– As a special case, 0! is defined to be 1.
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• Example
– Use induction to show that n!  2n-1 for all n  1.

– Proof sketch.
• Basis Step

– We must show that the inequality holds if n = 1. 

• Inductive Step
– We assume that the inequality holds for n; that is, we 

assume that n!  2n-1 is true.

– We must then prove that the inequality holds for n + 1; that 
is, we must prove that (n + 1)!  2n holds.

• Since the Basis Step and the Inductive Step have 
been verified, the Principle of Mathematical Induction 
tells us that the inequality holds for every positive 
integer n. 
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• Example

– If we want to verify that the statements 

S(n0), S(n0 + 1), ..., 

where n0  1, are true, we must change the 

Basis Step to S(n0) is true. 

– The Inductive Step then becomes 

for all n  n0, if S(n) is true, then 

S(n + 1) is true.
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• Example

– Geometric Sum
• Use induction to show that if r  1, 

a + ar1 + ar2 + ... + arn = a(rn+1 – 1)/(r – 1) 

for all n  0.

• Proof.
– exercise

– Use induction to show that 5n – 1 is divisible 
by 4 for all n  1.

• Proof. 
– exercise
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• Strong Form of Mathematical Induction

– Suppose that we have a propositional function 
S(n) whose domain of discourse is the set of 
integers greater than or equal to n0.

– Suppose that 

S(n0) is true; 

for all n > n0, if S(k) is true for all k, 

n0  k < n, then S(n) is true. 

– Then S(n) is true for every integer n  n0. 

• Show that the two forms of mathematical 
induction are logically equivalent.
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• Example
– Use mathematical induction to show that postage 

of four cents or more can be achieved by using 
only 2-cent and 5-cent stamps. 

• Proof.
– exercise

• Example
– Suppose that the sequence c1, c2, ... is defined by 

the equations c1 = 0, cn = cn/2 + n for all n > 1. 

– Use strong induction to prove that cn < 4n for all n
 1. 

• Proof.
– exercise
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• The Well-Ordering Property for 

nonnegative integers states that every 

nonempty set of nonnegative integers has 

a least element. 

– Show that this property is equivalent to the 

two forms of induction. 
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Today’s Topics

Sets
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• A set is a collection of objects (elements, 
members).

– Examples
• A = {1, 2, 3, 4} = {1, 3, 4, 2} = {1, 2, 2, 3, 4}

• B = {x | x is a positive, even integer}

• Cardinality

– If X is a finite set, we let |X| = number of elements 
in X. 

• Membership

– If x is in the set X, we write x  X, and if x is not in 
X, we write x  X.
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• Empty Set

– The set with no elements is called the empty

(null, void) set and is denoted . Thus  = { }. 

• Equality

– Two sets  X and Y are equal, notated as X = Y, if 

X and Y have the same elements. In symbols, X

= Y iff x((x  X  x  Y)  (x  Y  x  X)). 

• Example

– Prove that if A = {x | x2 + x – 6 = 0} and B = {2, -

3}, then A = B. 
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• Subset

– Suppose that X and Y are sets. If every element 
of X is an element of Y, we say that X is a subset
of Y, written as X  Y.  In symbols, X is a subset 
of Y if x(x  X  x  Y). 

• Examples

– If C = {1,3} and A = {1,2,3,4}, then C  A.

– Show that X  Y, where X = {x | x2 + x – 2 = 0}, Y
= set of integers, and the domain of discourse is 
the set of real numbers.

– Show that if X = {x |3x2 – x – 2 = 0} and Y = set of 
integers, X is not a subset of Y. 
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• Proper Subset
– If X is a subset of Y and X does not equal Y, we 

say that X is a proper subset of Y and write X  Y. 

• Power Set
– The set of all subsets (proper or not) of  a set X, 

denoted (X), is called the power set of X. 

– Example
• If A = {a,b,c}, the members of (A) are , {a}, {b}, {c}, 

{a,b}, {a,c}, {b,c}, {a,b,c}. All but {a,b,c} are proper 
subsets of A.

• For this example, |A| = 3, |(A)| = 23 = 8.

– Show that if |X| = n, then |(X)| = 2n. 
• Proof. 

– By induction on n. 
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• Union
– Given two sets X and Y, the set X  Y = {x | x 

X or x  Y} is called the union of X and Y. 

• Intersection
– The set X  Y = {x | x  X and x  Y} is called the 

intersection of X and Y. 

• Difference
– The set X – Y = {x | x  X and x  Y} is called the 

difference (or relative complement). 

• Disjoint
– Sets X and Y are disjoint if X  Y = . 
– A collection of sets S is said to be pairwise

disjoint if whenever X and Y are distinct sets in S, 
X and Y are disjoint.
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• Universe

– Sometimes we are dealing with sets, all of which are 
subsets of a set U. This set U is called a universal 
set or a universe. The set U must be explicitly given 
or inferred from the context. 

– Given a universal set U and a subset X of U, the set 
U – X is called the complement of X and is written XC.

• Venn diagrams

– Venn diagrams provide pictorial views of sets. In a 
Venn diagram, a rectangle depicts a universal set. 
Subsets of the universal set are drawn as circles. 
The inside of a circle represents the members of that 
set. 
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