- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics
Sets
Functions

- © © ©

The Language of Mathematics

Sets

- Theorem 2.1.12

Let U be a universal set and let A, B, and C be subsets of U . Verify the following properties. (a) Associative laws

- $(A \cup B) \cup C=A \cup(B \cup C)$
- $(A \cap B) \cap C=A \cap(B \cap C)$
(b) Commutative laws
- $A \cup B=B \cup A$
- $A \cap B=B \cap A$
(c) Distributive laws
- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Sets

(d) Identity laws

- $A \cap U=A$
- $A \cup \varnothing=A$
(e) Complement laws
- $A \cup A^{c}=U$
- $A \cap A^{C}=\varnothing$
(f) Idempotent laws
- $A \cup A=A$
- $A \cap A=A$
(g) Bound laws
- $A \cup U=U$
- $A \cap \varnothing=\varnothing$
(h) Absorption laws
- $A \cup(A \cap B)=A$
- $A \cap(A \cup B)=A$
(i) Involution law
- $\left(A^{c}\right)^{c}=A$
(j) $0 / 1$ laws
- $\varnothing^{c}=U$
- $\mathrm{U}^{\mathrm{C}}=\varnothing$
(k) De Morgan's laws for sets
- $(A \cup B)^{c}=A^{c} \cap B^{c}$
- $(A \cap B)^{c}=A^{c} \cup B^{c}$

Sets

- US
- We define the union of an arbitrary family S of sets to be those elements x belonging to at least one set X in S.
- Formally, $\cup S=\{x \mid x \in X$ for some $X \in S\}$.
- Similarly, we define the intersection of an arbitrary family S of sets to be those elements x belonging to every set X in S.
- Formally, $\cap S=\{x \mid x \in X$ for all $X \in S\}$.
- If $S=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, we write
$\cup S=\cup n_{i=1} A_{i} \cap S=\cap^{n}{ }_{i=1} A_{i}$
- If $S=\left\{A_{1}, A_{2}, \ldots\right\}$, we write
$\cup S=\cup^{\infty}{ }_{i=1} A_{i} \cap S=\cap^{\infty}{ }_{i=1} A_{i}$.

Sets

- Example
- For $i \geq 1$, define $A_{i}=\{i, i+1, \ldots\}$ and $S=\left\{A_{1}\right.$,
- Then $\cup^{\infty}{ }_{i=1} A_{i}=\cup S=\{1,2, \ldots\}, \cap^{\infty}{ }_{i=1} A_{i}=\cap S=$
- Partition
- A collection S of nonempty subsets of X is said to be a partition of the set X if every element in X belongs to exactly one member of S.
- Note that if S is a partition of X, S is pairwise disjoint and $\cup S=X$.
- Example
- Since each element of $X=\{1,2,3,4,5,6,7,8\}$ is in exactly one member of $S=\{\{1,4,5\},\{2,6\},\{3\},\{7,8\}\}, S$ is a partition of X.

Sets

- Cartesian product
- An ordered pair of elements, written (a, b), is considered distinct from the ordered pair (b, a), unless $a=b$.
- If X and Y are sets, we let $X \times Y$ denote the set of all ordered pairs (x, y) where $x \in X$ and $y \in Y$. We call $X \times Y$ the Cartesian product of X and Y.
- Example
- If $X=\{1,2,3\}$ and $Y=\{a, b\}$, then
- $X \times Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$
- $Y \times X=\{(a, 1),(b, 1),(a, 2),(b, 2),(a, 3),(b, 3)\}$
- $\underset{(3,3)\}}{X} \times=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)$,
- $Y \times Y=\{(a, a),(a, b),(b, a),(b, b)\}$

Sets

- n-tuple
- An n-tuple, written $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, takes order into account; that is, $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ precisely when $a_{1}=b_{1}, a_{1}=b_{1}, \ldots, a_{1}=b_{1}$,
- The Cartesian product of sets $X_{1}, X_{2}, \ldots, X_{n}$ is defined to be the set of all n-tuples $\left(x_{1}, x_{2} \ldots, x_{n}\right)$ where $X_{i} \in X_{i}$ for $i=1, \ldots, n$; it is denoted ${ }^{2} X_{1} \times X_{2}$
$\times \ldots \times X_{n}$. $\times \ldots \times X_{n}$.
- Examples
- Show that for arbitrary finite sets X and $Y, \mid X \times Y$ $=|X| \cdot|Y|$.
- Show that $\left|X_{1} \times X_{2} \times \ldots \times X_{n}\right|=\left|X_{1}\right| \cdot\left|X_{2}\right| \cdots\left|X_{n}\right|$.
- Proof.
- Use induction on the number n of sets.

Functions

- Definition
- Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in X$ with $(x, y) \in f$.
- We sometimes denote a function ffrom X to Y as $f: X \rightarrow Y$.
- The set X is called the domain of f.
- The set $\{y \mid(x, y) \in f\}$ (which is a subset of Y) is called the range of f.

Functions

- Are the following sets functions?
- The set $f=\{(1, a),(2, b),(3, a)\}$, with the domain $X=\{1,2,3\}$ and the range $Y=\{a, b, c\}$.
- The set $\{(1, a),(2, a),(3, b)\}$, with the domain X $=\{1,2,3,4\}$ and the range $Y=\{a, b, c\}$.
- The set $\{(1, a),(2, b),(3, c),(1, b)\}$, with the domain $X=\{1,2,3\}$ and the range $Y=\{a, b, c\}$.
- Visualization of a function
- Use an arrow diagram
- Use the graph of a function

Modulus Operator

- Modulus operator
- If x is an integer and y is a positive integer, we define x mod y to be the remainder when x is divided by y.
- Examples
- We have $6 \bmod 2=0,5 \bmod 1=0,8 \bmod 12$ $=8$.
- What day of the week will it be 365 days from Wednesday?
- $365 \bmod 7$ = 1

Modulus Operator

- Example
- International Standard Book Numbers (ISBN)
- An ISBN is a code of 10 characters separated by dashes, such as 0-8065-0959-7.
- An ISBN consists of four parts: a group code, a publisher code, a code that uniquely identifies the book among those published by the particular publisher, and a check character.
- The check character is $s \bmod 11$, where s is the sum of the first digit plus two times the second digit plus three times the third digit, ..., plus nine times the ninth digit. If this value is 10 , the check character is X.
- $s=0+2 \cdot 8+3.0+4.6+5 \cdot 5+6 \cdot 0+7.9+8 \cdot 5+9 \cdot 9=$ 249
- $249 \bmod 11=7$.

Floor and Ceiling

- Definition
- The floor of x, denoted by $\lfloor x\rfloor$, is the greatest integer less than or equal to x.
- The ceiling of x, denoted $\lceil x\rceil$, is the least integer greater than or equal to x.
- Examples
$-\left\lfloor\begin{array}{l}8.3\rfloor=8,\lceil 9.1\rceil=10,\lfloor-8.7\rfloor=-9,\lceil-11.3\rceil=-11 \text {, } \\ 6\rceil=6,[-8\rfloor=-8 .\end{array}\right.$
- cf. the graphs of the floor and ceiling functions, where a bracket, [or], indicates that the point is to be included in the graph; a parenthesis, (or), indicates that the point is to be excluded from the graph.

Floor and Ceiling

- Example
- In 2005, the U.S. first-class postage rate for up to 13 ounces was 37 cents for the first ounce or fraction thereof and 23 cents for each additional ounce or fraction thereof.
- Define the postage $P(w)$ as a function of weight w.
- $P(w)=37+23\lceil w-1\rceil, 13 \geq w>0$.

Properties

- Definition
- A function from X to Y is said to be one-to-one (or injective) if for each $y \in Y$, there is at most one $x \in X$ with $f(x)=y$.
- When a function f is one-to-one, for all $x_{1}, x_{2} \in X$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.
- In symbols, $\forall x_{1} \forall x_{2}\left(\left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \rightarrow\left(x_{1}=x_{2}\right)\right)$.
- Are the following functions one-to-orgr?
$-f=\{(1, b),(3, a),(2, c)\}$ from $X=\{1,2,3\}$ to $Y=$ $\{a, b, c, d\}$
$-f=\{(1, a),(2, b),(3, a)\}$ from $X=\{1,2,3\}$ to $Y=$ $\{a, b, c, d\}$

Properties

- Further examples
- Prove that the function $f(n)=2 n+1$ from the set of positive integers to the set of positive integers is one-to-one.
- Proof.
- Use a direct proof.
- Prove that the function $f(n)=2^{n}-n^{2}$ from the set of positive integers to the set of integers is not one-to-one.

Properties

- Definition
- If f is a function from X to Y and the range of f is Y, f is said to be onto Y (or an onto function or a surjective function).
- When a function f is onto, for all $y \in Y$, there exists $x \in X$ such that $f(x)=y$.
- In symbols, $\forall y \in Y \exists x \in X(f(x)=y)$.
- Are the following functions onto?
$-f=\{(1, a),(2, c),(3, b)\}$ from $X=\{1,2,3\}$ to $Y=$ $\{a, b, c\}$
- $f=\{(1, b),(3, a),(2, c)\}$ from $X=\{1,2,3\}$ to $Y=$ $\{a, b, c, d\}$

Properties

- Further examples
- Prove that the function $f(x)=1 / x^{2}$ from the set X of nonzero real numbers to the set Y of positive real numbers is onto Y.
- Prove that the function $f(n)=2 n-1$ from the set X of positive integers to the set Y of positive integers is not onto Y.

Properties

- Definition
- A function that is both one-to-one and onto is called a bijection.
- Examples
$-f=\{(1, a),(2, c),(3, b)\}$ from $X=\{1,2,3\}$ to $Y=$ $\{a, b, c\}$
- Show that $\{(y, x) \mid(x, y) \in f$ is one-to-one, onto function from Y to X, if f is a one-to-one, onto function from X to Y.
- This new function, denoted f^{-1}, is called f inverse.
- For the function $f=\{(1, a),(2, c),(3, b)\}$, we have $f^{-1}=$ $\{(a, 1),(c, 2),(b, 3)\}$.

Summary

- Sets
- Union
- Intersection
- Partition
- Cartesian Product
- n-tuple
- Functions
- Domain
- Range
- Modulus Operator
- Floor
- Ceiling
- Injective Function (One-to-One)
- Surjective Function (Onto)
- Bijective Function

