

Discrete Mathematics CS204: Spring, 2008

Jong C. Park Computer Science Division, KAIST **Today's Topics** Functions (continued) Sequences and Strings

The Language of Mathematics

2

Composition

Definition

- Let g be a function from X to Y and let f be a function from Y to Z.
- The composition of *f* with *g*, denoted $f \circ g$, is the function $(f \circ g)(x) = f(g(x))$ from *X* to *Z*.

Example

- Given $g = \{(1,a), (2,a), (3,c)\}$, a function from $X = \{1,2,3\}$ to $Y = \{a,b,c\}$, and $f = \{(a,y), (b,x), (c,z)\}$, a function from Y to $Z = \{x,y,z\}$, the composition function from X to Z is the function $f \circ g = \{(1,y), (2,y), (3,z)\}$.

Arity

Definition

- A function from $X \times X$ to X is called a binary operator on X.
- A function from X to X is called a unary operator on X.

Examples

- Let $X = \{1, 2, ...\}$. If we define f(x, y) = x + y, where $x, y \in X$, then *f* is a binary operator on *X*.
- Let U be a universal set. If we define $f(X) = X^C$, where $X \in \mathcal{O}(U)$, then f is a unary operator on $\mathcal{O}(U)$.

Sequences and Strings

Definition

- A sequence is a special type of function in which the domain consists of a set of consecutive integers.
- The *n*th term is typically denoted C_n .
- We call *n* the index of the sequence.
- Examples
 - sequence s: 2, 4, 6, ..., 2n, ...
 sequence t: a, a, b, a, b

Definition

- If the domain of the sequence is infinite, we say that the sequence is infinite. Otherwise, we say that the sequence is finite.
- When we want to explicitly state the initial index k of an infinite sequence s, we can write $\{s_n\}_{n=0}^{\infty}$.
- A finite sequence x indexed from *i* to *j* can be denoted $\{x_n\}_{n=i}^{j}$.

Example

- A sequence t whose domain is $\{-1, 0, 1, 2, 3\}$ can be denoted $\{t_n\}_{n=-1}^3$.

Definition

- A sequence s is increasing if $s_n < s_{n+1}$ for all *n* for which *n* and *n* + 1 are in the domain of the sequence.
- A sequence s is decreasing if $s_n > s_{n+1}$ for all n for which n and n + 1 are in the domain of the sequence.
- A sequence s is nondecreasing if $s_n \le s_{n+1}$ for all *n* for which *n* and *n* + 1 are in the domain of the sequence.
- A sequence s is nonincreasing if $s_n \ge s_{n+1}$ for all n for which n and n + 1 are in the domain of the sequence.

8

- Identify the type of the following sequences.
 - -2, 5, 13, 104, 300
 - $-a_i = 1/i, i \ge 1$
 - 100, 90, 90, 74, 74, 74, 30
 - 100

Definition

- Let $\{s_n\}$ be a sequence defined for n = m, m+1, ..., and let $n_1, n_2, ...$ be an increasing sequence whose values are in the set $\{m, m+1, ...\}$. We call the sequence $\{s_{n_k}\}$ a subsequence of $\{s_n\}$.

Examples

- The sequence *b*, *c* is a subsequence of the sequence $t_1 = a$, $t_2 = a$, $t_3 = b$, $t_4 = c$, $t_5 = q$.
- The sequence 2, 4, 8, 16, ..., 2k, ... is a subsequence of the sequence 2, 4, 6, 8, 10, 12, 14, 16, ..., 2n, ...

Definition

- If $\{a_i\}_{i=m}^n$ is a sequence, we define $\sum_{i=m}^n a_i = a_m + a_{m+1} + \dots + a_n$,
 - $\Pi_{i=m}^{n} a_{i} = a_{m} \cdot a_{m+1} \cdot a_{n}$
- The formalism $\sum_{i=m}^{n} a_i$ is called the sum (or sigma) notation and $\prod_{i=m}^{n} a_i$ is called the product notation. - *i* is called the index, *m* is called the lower limit, and *n* is called the upper limit.

Example

- Let *a* be the sequence defined by $a_n = 2n$, $n \ge 1$. - Compute $\sum_{i=1}^{3} a_i$ and $\prod_{i=1}^{3} a_i$.

Strings

Definition

- A string over X, where X is a finite set, is a finite sequence of elements from X.
- The string with no elements is called the null string, denoted λ .
- We let X* denote the set of all strings over X, including the null string, and we let X+ denote the set of all nonnull strings over X.

Examples

- Let $X = \{a, b, c\}$. If we let $\beta_1 = b$, $\beta_2 = a$, $\beta_3 = a$, $\beta_4 = c$, we obtain a string over X. This string is written baac.
- Repetitions in a string can be specified by superscripts.
 - bbaaac may be written $b^2 a^3 c$.

Strings

Definition

- The length of a string α is the number of elements in α , denoted $|\alpha|$.
- If α and β are two strings, the string consisting of α followed by β , written $\alpha\beta$, is called the concatenation of α and β .

Examples

- If α = aabab and β = $a^3b^4a^{32}$, then $|\alpha|$ = 5 and $|\beta|$ = 39.
- Given $\gamma = aab$ and $\theta = cabd$, compute $\gamma\theta$, $\theta\gamma$, $\gamma\lambda$, $\lambda\gamma$.

Strings

Definition

- A string β is a substring of the string α if there are strings γ and δ with $\alpha = \gamma \beta \delta$.

Example

- The string $\beta = add$ is a substring of the string $\alpha = aaaddad$.

Today's Topics Relations

Relations

6

6

6

Discrete Mathematics, 2008

Computer Science Division, KAIST

Relations

Definition

- A (binary) relation R from a set X to a set Y is a subset of the Cartesian product $X \times Y$.
- If $(x,y) \in R$, we write x R y and say that x is related to y.
- If X = Y, we call R a (binary) relation on X.
- The set $\{x \in X \mid (x,y) \in R \text{ for some } y \in Y\}$ is called the domain of R.
- The set $\{y \in Y \mid (x,y) \in R \text{ for some } x \in X\}$ is called the range of R.

Relations

Note

- A function is a special type of relation. A function f from X to Y is a relation from X to Y having the properties:
 - (a) The domain of *f* is equal to *X*.
 - (b) For each $x \in X$, there is exactly one $y \in Y$ such that $(x,y) \in f$.

Example

For X = {Bill, Mary, Beth, Dave} and Y = {CompSci, Math, Art, History}, we may have a relation R = {(Bill, CompSci), (Mary,Math), (Bill,Art), (Beth,History), (Beth,CompSci), (Dave,Math)}.

Relations

Example

- Let R be the relation on $X = \{1,2,3,4\}$ defined by $(x,y) \in R$ if $x \le y, x, y \in X$.
- Then $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}.$
- The domain and range of R are both equal to X.

Note

 An informative way to picture a relation on a set is to draw its digraph, a notion to be defined later.

Definition

A relation R on a set X is called reflexive if (x,x) ∈ R for every x ∈ X.
Are the following relations reflexive?
the relation R on X = {1,2,3,4} defined by (x,y) ∈ R if x ≤ y, where x, y ∈ X
the relation R = {(a,a), (b,c), (c,b), (d,d)} on X = {a,b,c,d}

Definition

- A relation R on a set X is called symmetric if for all x, $y \in X$, if $(x,y) \in R$, then $(y,x) \in R$.

- Are the following relations symmetric?
 - the relation $R = \{(a,a), (b,c), (c,b), (d,d)\}$ on $X = \{a,b,c,d\}$

- the relation R on $X = \{1,2,3,4\}$ defined by $(x,y) \in R$ if $x \le y, x, y \in X$

Definition

- A relation R on a set X is called antisymmetric if for all $x, y \in X$, if $(x,y) \in R$ and $x \neq y$, then $(y,x) \notin R$.

- Are the following relations antisymmetric?
 the relation R on X = {1,2,3,4} defined by (x,y) ∈ R if x ≤ y, x,y ∈ X
 - the relation $R = \{(a,a), (b,c), (c,b), (d,d)\}$ on $X = \{a,b,c,d\}$
 - the relation $R = \{(a,a), (b,b), (c,c)\}$

Definition

- A relation R on a set X is called transitive if for all $x,y,z \in X$, if (x,y) and $(y,z) \in R$, then $(x,z) \in R$.

Are the following relations transitive?
the relation R on X = {1,2,3,4} defined by (x,y)
∈ R if x ≤ y, x,y ∈ X
the relation R = {(a,a), (b,c), (c,b), (d,d)} on X
= {a,b,c,d}

Definition

 A relation R on a set X is called a partial order if R is reflexive, antisymmetric, and transitive.

Example

- the relation R defined on the positive integer by $(x,y) \in R$ if x divides y

Note

- Suppose that *R* is a partial order on a set *X*. If $x, y \in X$ and either (x, y) or (y, x) is in *R*, we say that *x* and *y* are comparable. If $x, y \in X$ and both (x, y) and (y, x) are not in *R*, we say that *x* and *y* are incomparable. If every pair of elements in *X* is comparable, we call *R* a total order (on X).

Definition

- Let *R* be a relation from *X* to *Y*. The inverse of *R*, denoted R^{-1} , is the relation from *Y* to *X* defined by $R^{-1} = \{(y, x) \mid (x, y) \in R\}$.

Example

- If we define a relation R from $X = \{2,3,4\}$ to Y = $\{3,4,5,6,7\}$ by

 $(x,y) \in R$ if x divides y, we obtain $R = \{(2,4), (2,6), (3,3), (3,6), (4,4)\}.$ What is the inverse of this relation R?

Composition

Definition

- Let R_1 be a relation from X to Y and R_2 be a relation from Y to Z. The composition of R_1 and R_2 , denoted $R_2 \circ R_1$, is the relation from X to Z defined by $R_2 \circ R_1 = \{(x,z) \mid (x,y) \in R_1$ and $(y,z) \in R_2$ for some $y \in Y\}$.

Example

- What is the composition of the relations $R_1 = \{(1,2), (1,6), (2,4), (3,4), (3,6), (3,8)\}$ and $R_2 = \{(2,u), (4,s), (4,t), (6,t), (8,u)\}$, or $R_2 \circ R_1$?

- Functions
- Sequences and Strings
- Relations

