- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics
Functions (continued)
Sequences and Strings

- © © ©

The Language of Mathematics

Composition

- Definition
- Let g be a function from X to Y and let f be a function from Y to Z.
- The composition of f with g, denoted $f^{\circ} g$, is the function $\left(f^{\circ} g\right)(x)=f(g(x))$ from X to Z.
- Example
- Given $g=\{(1, a),(2, a),(3, c)\}$, a function from $X=\{1,2,3\}$ to $Y=\{a, b, c\}$, and $f=\{(a, y),(b, x)$, $(c, z)\}$, a function from Y to $Z=\{x, y, z\}$, the composition function from X to Z is the function $f^{\circ} g=\{(1, y),(2, y),(3, z)\}$.

Arity

- Definition
- A function from $X \times X$ to X is called a binary operator on X.
- A function from X to X is called a unary operator on X.
- Examples
- Let $X=\{1,2, \ldots\}$. If we define $f(x, y)=x+y$, where $x, y \in X$, then f is a binary operator on X.
- Let U be a universal set. If we define $f(X)=X^{C}$, where $X \in \wp_{\Omega}(U)$, then f is a unary operator on $\wp(U)$.

Sequences and Strings

- Definition
- A sequence is a special type of function in which the domain consists of a set of consecutive integers.
- The nth term is typically denoted C_{n}.
- We call n the index of the sequence.
- Examples
- sequence s: 2, 4, 6, ..., 2n, ...
- sequence t : a, a, b, a, b

Sequences

- Definition
- If the domain of the sequence is infinite, we say that the sequence is infinite. Otherwise, we say that the sequence is finite.
- When we want to explicitly state the initial index k of an infinite sequence s, we can write $\left\{s_{n}\right\}^{\infty}{ }_{n=0}$.
- A finite sequence x indexed from i to j can be denoted $\left\{x_{n}\right\}^{j}{ }_{n=i}$
- Example
- A sequence t whose domain is $\{-1,0,1,2,3\}$ can be denoted $\left\{t_{n}\right\}^{3}{ }_{n=1}$.

Sequences

- Definition
- A sequence s is increasing if $s_{n}<s_{n+1}$ for all n for which n and $n+1$ are in the domain of the sequence.
- A sequence s is decreasing if $s_{n}>s_{n+1}$ for all n for which n and $n+1$ are in the domain of the sequence.
- A sequence s is nondecreasing if $s_{n} \leq s_{n+1}$ for all n for which n and $n+1$ are in the domain of the sequence.
- A sequence s is nonincreasing if $s_{n} \geq s_{n+1}$ for all n for which n and $n+1$ are in the domain of the sequence.

Sequences

- Identify the type of the following sequences.
- 2, 5, 13, 104, 300
$-a_{i}=1 / i, i \geq 1$
- 100, 90, 90, 74, 74, 74, 30
- 100

Sequences

- Definition
- Let $\left\{s_{n}\right\}$ be a sequence defined for $n=m$, $m+1, \ldots$, and let n_{1}, n_{2}, \ldots be an increasing sequence whose values are in the set $\{m$, $m+1, \ldots\}$. We call the sequence $\left\{s_{n_{k}}\right\}$ a subsequence of $\left\{s_{n}\right\}$.
- Examples
- The sequence b, c is a subsequence of the sequence $t_{1}=a, t_{2}=a, t_{3}=b, t_{4}=c, t_{5}=q$.
- The sequence $2,4,8,16, \ldots, 2 k, \ldots$ is a subsequence of the sequence $2,4,6,8,10,12$, $14,16, \ldots, 2 n, \ldots$

Sequences

- Definition
- If $\{a\}^{n}{ }_{i=m}$ is a sequence, we define

$$
\begin{aligned}
& \sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n}, \\
& \prod_{i=m}^{n} a_{i}=a_{m} \cdot a_{m+1} \cdots a_{n} .
\end{aligned}
$$

- The formalism $\sum^{n}{ }_{i=m} a_{i}$ is called the sum (or sigma) notation and $\Pi_{i=m}^{n} a_{i}$ is called the product notation.
- i is called the index, m is called the lower limit, and n is called the upper limit.
- Example
- Let a be the sequence defined by $\mathrm{a}_{n}=2 n, n \geq 1$.
- Compute $\Sigma_{j=1}^{3} a_{i}$ and $\Pi_{i=1}^{3} a_{i}$

Strings

- Definition
- A string over X, where X is a finite set, is a finite sequence of elements from X.
- The string with no elements is called the null string, denoted λ.
- We let X^{*} denote the set of all strings over X, including the null string, and we let $X+$ denote the set of all nonnull strings over X.
- Examples
- Let $X=\{a, b, c\}$. If we let $\beta_{1}=b, \beta_{2}=a, \beta_{3}=a, \beta_{4}=c$, we obtain a string over X. This string is written baac.
- Repetitions in a string can be specified by superscripts.
- bbaaac may be written $b^{2} a^{3} c$.

Strings

- Definition
- The length of a string α is the number of elements in α, denoted $|\alpha|$.
- If α and β are two strings, the string consisting of α followed by β, written $\alpha \beta$, is called the concatenation of α and β.
- Examples
- If $\alpha=a a b a b$ and $\beta=a^{3} b^{4} a^{32}$, then $|\alpha|=5$ and $|\beta|$ $=39$.
- Given $\gamma=a a b$ and $\theta=$ cabd, compute $\gamma \theta, \theta \gamma, \gamma \lambda$, $\lambda \gamma$.

Strings

- Definition
- A string β is a substring of the string α if there are strings γ and δ with $\alpha=\gamma \beta \delta$.
- Example
- The string $\beta=$ add is a substring of the string $\alpha=$ aaaddad.

Today's Topics
Relations

-0.0.

Relations

Relations

- Definition
- A (binary) relation R from a set X to a set Y is a subset of the Cartesian product $X \times Y$.
- If $(x, y) \in R$, we write $x R y$ and say that x is related to y.
- If $X=Y$, we call R a (binary) relation on X.
- The set $\{x \in X \mid(x, y) \in R$ for some $y \in Y$ is called the domain of R.
- The set $\{y \in Y \mid(x, y) \in R$ for some $x \in X\}$ is called the range of R.

Relations

- Note
- A function is a special type of relation. A function f from X to Y is a relation from X to Y having the properties:
(a) The domain of f is equal to X.
(b) For each $x \in X$, there is exactly one $y \in Y$ such that $(x, y) \in f$.
- Example
- For $X=\{$ Bill, Mary, Beth, Dave $\}$ and $Y=$ \{CompSci, Math, Art, History\}, we may have a relation $R=\{($ Bill, CompSci), (Mary,Math), (Bill,Art), (Beth,History), (Beth,CompSci), (Dave,Math)\}.

Relations

- Example
- Let R be the relation on $X=\{1,2,3,4\}$ defined by $(x, y) \in R$ if $x \leq y, x, y \in X$.
- Then $R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3)$, $(2,4),(3,3),(3,4),(4,4)\}$.
- The domain and range of R are both equal to X.
- Note
- An informative way to picture a relation on a set is to draw its digraph, a notion to be defined later.

Properties

- Definition
- A relation R on a set X is called reflexive if $(x, x) \in R$ for every $x \in X$.
- Are the following relations reflexive?
- the relation R on $X=\{1,2,3,4\}$ defined by (x, y) $\in R$ if $x \leq y$, where $x, y \in X$
- the relation $R=\{(a, a),(b, c),(c, b),(d, d)\}$ on X
$=\{a, b, c, d\}$

Properties

- Definition
- A relation R on a set X is called symmetric if for all $x, y \in X$, if $(x, y) \in R$, then $(y, x) \in R$.
- Are the following relations symmetric?
- the relation $R=\{(a, a),(b, c),(c, b),(d, d)\}$ on X
$=\{a, b, c, d\}$
- the relation R on $X=\{1,2,3,4\}$ defined by (x, y) $\in R$ if $x \leq y, x, y \in X$

Properties

- Definition
- A relation R on a set X is called antisymmetric if for all $x, y \in X$, if $(x, y) \in R$ and $x \neq y$, then $(y, x) \notin R$.
- Are the following relations antisymmetric?
- the relation R on $X=\{1,2,3,4\}$ defined by (x, y) $\in R$ if $x \leq y, x, y \in X$
- the relation $R=\{(a, a),(b, c),(c, b),(d, d)\}$ on X $=\{a, b, c, d\}$
- the relation $R=\{(a, a),(b, b),(c, c)\}$

Properties

- Definition
- A relation R on a set X is called transitive if for all $x, y, z \in X$, if (x, y) and $(y, z) \in R$, then $(x, z) \in R$.
- Are the following relations transitive?
- the relation R on $X=\{1,2,3,4\}$ defined by (x, y) $\in R$ if $x \leq y, x, y \in X$
- the relation $R=\{(a, a),(b, c),(c, b),(d, d)\}$ on X

$$
=\{a, b, c, d\}
$$

Properties

- Definition
- A relation R on a set X is called a partial order if R is refilexive, antisymmetric, and transitive.
- Example
- the relation R defined on the positive integer by $(x, y) \in R$ if x divides y
- Note
- Suppose that R is a partial order on a set X. If $x, y \in X$ and either (x, y) or (y, x) is in R, we say that x and y are comparable. If $x, y \in X$ and both (x, y) and (y, x) are not in R, we say that x and y are incomparable. If every pair of elements in X is comparable, we call R a total order (on X).

Properties

- Definition
- Let R be a relation from X to Y. The inverse of R, denoted R^{-1}, is the relation from Y to X defined by $R^{-1}=\{(y, x) \mid(x, y) \in R\}$.
- Example
- If we define a relation R from $X=\{2,3,4\}$ to Y $=\{3,4,5,6,7\}$ by $(x, y) \in R$ if x divides y,
we obtain $R=\{(2,4),(2,6),(3,3),(3,6),(4,4)\}$. What is the inverse of this relation R ?

Composition

- Definition
- Let R_{1} be a relation from X to Y and R_{2} be a relation from Y to Z. The composition of R_{1} and R_{2}, denoted $R_{2}{ }^{\circ} R_{1}$, is the relation from X to Z defined by $R_{2}{ }^{\circ} R_{1}=\left\{(x, z) \mid(x, y) \in R_{1}\right.$ and $(y, z) \in R_{2}$ for some $y \in Y$.
- Example
- What is the composition of the relations $R_{1}=$ $\{(1,2),(1,6),(2,4),(3,4),(3,6),(3,8)\}$ and $R_{2}=$ $\{(2, u),(4, s),(4, t),(6, t),(8, u)\}$, or $R_{2}{ }^{\circ} R_{1}$?

Summary

- Functions
- Sequences and Strings
- Relations

