- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics
 Equivalence Relations
 Matrices of Relations

-0.0.

Relations

Equivalence Relations

- Theorem
- Let S be a partition of a set X. Define $x R y$ to mean that for some set S in S, both x and y belong to S. Then R is reflexive, symmetric, and transitive.
- Proof.
- Let $x \in X$. By the definition of partition, x belongs to some member S of S. Thus $x R \times$ and R is reflexive.
- Suppose that $x R y$. Then both x and y belong to some set $S \in S$. Since both y and x belong to $S, y R x$ and R is symmetric.
- Finally, suppose that $x R$ y and $y R z$. Then both x and y belong to some set $S \in S$ and both y and z belong to some sett $T \in S$. Since y belongs to exactly one member of S, we must have $S=T$. Therefore, both x and z belong to S and $x R z$. We have shown that R is transitive.

Equivalence Relations

- Example
- Consider the partition $S=\{\{1,3,5\},\{2,6\},\{4\}\}$ of $X=\{1,2,3,4,5,6\}$.
- What is the relation R on X as given by the preceding theorem?

Equivalence Relations

- Definition
- A relation that is reflexive, symmetric, and transitive on a set X is called an equivalence relation on X.
- Are any of the following relations equivalence relations?
- the relation $R=\{(1,1),(1,3),(1,5),(2,2),(2,4)$, $(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)\}$
- the relation R on $X=\{1,2,3,4\}$ defined by $(x, y) \in$ R if $x \leq y, x, y \in X$
- the relation $R=\{(a, a),(b, c),(c, b),(d, a)\}$ on $X=$ $\{a, b, c, a\}$

Equivalence Relations

- Theorem
- Let R be an equivalence relation on a set X. For each $a \in X$, let $[a]=\{x \in X \mid x R$ a\}. (In words, [a] is the set of all elements in X that are related to a.) Then $S=\{[a] \mid a \in X\}$ is a partition of X.
- Proof.
- We must show that every element in X belongs to exactly one member of S. Let $a \in X$. Since a $R a, a \in$ [a]. Thus every element in X belongs to at least one member of S.
- It remains to show that every element in X belongs to exactly one member of S; that is, if $x \in X$ and $x \in[a] \cap[b]$, then $[a]=[b]$.

Equivalence Relations

- Proof (continued).
- We first show that for all $c, d \in X$, if $c R d$, then $[c]$ $=[d]$. Suppose that $c R d$. Let $x \in[c]$. Then $x R c$. Since $c R d$ and R is transitive, $x R d$. Therefore, x $\in[d]$ and $[c] \subseteq[d]$. The argument that $[d] \subseteq[c]$ is the same as that just given, but with the roles of c and d interchanged. Thus $[c]=[d]$.
- We now prove the following claim.

$$
\text { if } x \in X \text { and } x \in[a] \cap[b] \text {, then }[a]=[b] \text {. }
$$

Assume that $x \in X$ and $x \in[a] \cap[b]$. Then $x R a$ and $x R b$. Our preceding result shows that $[x]=[a]$ and $[x]=[b]$. Thus $[a]=[b]$.

Equivalence Relations

- Definition
- Let R be an equivalence relation on a set X. The sets [a] as defined in the preceding theorem are called the equivalence classes of X given by the relation R.
- Examples
- Given the equivalence relation $R=\{(1,1),(1,3),(1,5)$, $(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),(2,2),(2,6),(6,2)$, $(6,6),(4,4)\}$ on $X=\{1,2,3,4,5,6\}$, determine the equivalence classes [1], [2], [3], and [4].
- What are the equivalence classes for the equivalence relation $R=\{(1,1),(1,3),(1,5),(2,2)$, $(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5)\} ?$

Equivalence Relations

- Theorem
- Let R be an equivalence relation on a finite set X. If each equivalence class has r elements, there are $|X| / r$ equivalence classes.
- Proof.
- Let $X_{1}, X_{2}, \ldots, X_{k}$ denote the distinct equivalence classes.
- Since these sets partition $X,|X|=\left|X_{1}\right|+\left|X_{2}\right|+\cdots+$ $\left|X_{k}\right|=r+r+\cdots+r=k r$ and the conclusion follows.

Matrices of Relations

- Example
- The matrix of the relation $R=\{(1, b),(1, a)$, $(2, c),(3, c),(3, b),(4, a)\}$ from $X=\{1,2,3,4\}$ to $Y=\{a, b, c, d\}$ relative to the orderings $1,2,3$, 4 and a, b, c, d is

	a	b	c	d
1	0	1	0	1
2	0	0	1	0
3	0	1	1	0
4	1	0	0	0

Matrices of Relations

- Example
- The matrix of the relation $R=\{(1, b),(1, a)$, $(2, c),(3, c),(3, b),(4, a)\}$ from $X=\{1,2,3,4\}$ to $Y=\{a, b, c, d\}$ relative to the orderings $2,3,4$,
1 and d, b, a, c is

	d	b	a	c
2	0	0	0	1
3	0	1	0	1
4	0	0	1	0
1	1	1	0	0

Matrices of Relations

- Example
- The matrix of the relation R from $\{2,3,4\}$ to $\{5,6,7,8\}$, relative to the orderings $2,3,4$ and $5,6,7,8$, defined by x R y if x divides y is

	5	6	7	8
2	0	1	0	1
3	0	1	0	0
4	0	0	0	1

Matrices of Relations

- Example
- The matrix of the relation $R=\{(a, a),(b, b)$, $(c, c),(d, d),(b, c),(c, b)\}$ on $\{a, b, c, d\}$, relative to the ordering a, b, c, d, is

	a	b	c	d
a	1	0	0	0
b	0	1	1	0
c	0	1	1	0
d	0	0	0	1

Matrices of Relations

- How to determine whether a relation R on a set X is
- reflexive?
- if and only if A has 1 's on the main diagonal
- if and only if $(x, x) \in R$ for all $x \in X$
- symmetric?
- if and only if A is symmetric about the main diagonal
- if and only if for all i and j, the $j \not j$ th entry of A is equal to the jth entry of A
- antisymmetric?
- whenever the $i j$ th entry is $1, i \neq j$, the j th entry is not 1

Matrices of Relations

- Example
- Let R_{1} be the relation from $X=\{1,2,3\}$ to $Y=$ $\{a, b\}$ defined by $R_{1}=\{(1, a),(2, b),(3, a),(3, b)\}$, and let R_{2} be the relation from Y to $Z=\{x, y, z\}$ defined by $R_{2}=\{(a, x),(a, y),(b, y),(b, z)\}$.
- The matrix of R_{1} relative to the orderings 1,2 , 3 and a, b is

$$
A_{1}=\begin{array}{ccc}
& a & b \\
1 & 1 & 0 \\
2 & 0 & 1 \\
3 & 1 & 1
\end{array}
$$

Matrices of Relations

- and the matrix of R_{2} relative to the orderings a, b and x, y, z is

$$
A_{2}=\begin{array}{llll}
a & 1 & 1 & 0 \\
b & 0 & 1 & 1
\end{array}
$$

- The product of these matrices is

$A_{1} A_{2}=$| | x | y | z |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 |
| 2 | 0 | 1 | 1 |
| 3 | 1 | 2 | 1 |

Summary

- Equivalence Relations
- Matrices of Relations

