

Discrete Mathematics CS204: Spring, 2008

Jong C. Park Computer Science Division, KAIST Today's Topics Equivalence Relations Matrices of Relations

Relations

Discrete Mathematics, 2008

Computer Science Division, KAIST

Example

Let R₁ be the relation from X = {1,2,3} to Y = {a,b} defined by R₁ = {(1,a), (2,b), (3,a), (3,b)}, and let R₂ be the relation from Y to Z = {x,y,z} defined by R₂ = {(a,x), (a,y), (b,y), (b,z)}.
The matrix of R₁ relative to the orderings 1, 2,

3

b

0

1

a

1

1

 $A_1 = 2 0 1$

3

3 and a, b is

and the matrix of R₂ relative to the orderings
 a, *b* and *x*, *y*, *z* is

x Y z

 $A_{2} = \begin{cases} a & 1 & 1 & 0 \\ b & 0 & 1 & 1 \end{cases}$ - The product of these matrices is $x \quad y \quad z$ $1 \quad 1 \quad 1 \quad 0$ $A_{1}A_{2} = 2 \quad 0 \quad 1 \quad 1$ $3 \quad 1 \quad 2 \quad 1$

4

• Interpretation – The *ik*th entry in A_1A_2 is computed as

 $\begin{array}{cccc} a & b & k \\ i & s & t & u \\ v & = & su + & tv \\ v & \end{array}$

- If this value is nonzero, then either su or tv is nonzero.
- Suppose that $su \neq 0$. (The argument is similar if $tv \neq 0$.) Then $s \neq 0$ and $u \neq 0$. This means that $(i,a) \in R_1$ and $(a,k) \in R_2$. This implies that $(i,k) \in R_2 \circ R_1$. We have shown that if the *ik*th entry in A_1A_2 is nonzero, then $(i,k) \in R_2 \circ R_1$.

- The converse is also true. Assume that $(i,k) \in$ $R_2 \circ R_1$. Then, either 1. $(i,a) \in R_1$ and $(a,k) \in R_2$ or 2. $(i,b) \in R_1$ and $(b,k) \in R_2$. - If 1 holds, then s = 1 and u = 1, so su = 1 and su + tv is nonzero. Similarly, if 2 holds, tv = 1and again we have su + tv nonzero. We have shown that if $(i,k) \in R_2 \circ R_1$, then the *ik*th entry in A_1A_2 is nonzero.

Theorem

- Let R₁ be a relation from X to Y and let R₂ be a relation from Y to Z. Choose orderings of X, Y, and Z.
- Let A_1 be the matrix of R_1 and let A_2 be the matrix of R_2 with respect to the orderings selected.
- The matrix of the relation $R_2 \circ R_1$ with respect to the orderings selected is obtained by replacing each nonzero term in the matrix product A_1A_2 by 1.

7

- Proof.
 - Explained earlier through the interpretation.
 - That is, the *ik*th entry in A_1A_2 is nonzero if and only if $(i,k) \in R_2 \circ R_1$.

- How to determine whether a relation R on a set X is
 - transitive?
 - If A is the matrix of R (relative to some ordering), we compute A². We then compare A and A². The relation R is transitive if and only if whenever entry i, j in A² is nonzero, entry i, j in A is also nonzero. The reason is that entry i, j in A² is nonzero if and only if there are elements (i,k) and (k,j) in R. Now R is transitive if and only if whenever (i,k) and (k,j) are in R, then (i,j) is in R. But (i,j) is in R if and only if entry i, j in A is nonzero.
 - Therefore, R is transitive if and only if whenever entry i, j in A² is nonzero, entry i, j in A is also nonzero.

Example

- The matrix of the relation $R = \{(a,a), (b,b), (c,c), (d,d), (b,c), (c,b)\}$ on $\{a,b,c,d\}$, relative to the ordering a, b, c, d, is 1 0 0 0

 $-\text{Its square is}_{A^2} = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{cases} = \begin{cases} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{cases}$

 We see that whenever entry *i*, *j* in A² is nonzero, entry *i*, *j* in A is also nonzero. Therefore, R is transitive.

Example

- The matrix of the relation $R = \{(a,a), (b,b), (c,c), (d,d), (a,c), (c,b)\}$ on $\{a,b,c,d\}$, relative to the ordering a, b, c, d, is

 $-\text{Its square is}_{A^2} = \begin{cases} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{cases} = \begin{cases} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{cases}$

 The entry in row 1, column 2 of A² is nonzero, but the corresponding entry in A is zero. Therefore, R is not transitive. Today's Topics Introduction Examples of Algorithms Analysis of Algorithms

Algorithms

- Algorithm a finite sequence of instructions Characteristics of an algorithm – Input It receives input. - Output It produces output. - Precision
 - The steps are precisely stated.

- Characteristics of an algorithm (continued)
 Determinism
 - The intermediate results of each step of execution are unique and are determined only by the inputs and the results of the preceding steps.
 - Finiteness
 - It terminates; that is, it stops after finitely many instructions have been executed.
 - Correctness
 - The output produced by the algorithm is correct; that is, the algorithm correctly solves the problem.
 - Generality
 - It applies to a set of inputs.

Example

 An algorithm to find the maximum of three numbers a, b, and c:

- 1. large = a.
- 2. If b > large, then large = b.
- 3. If c > large, then large = c.
- Properties
 - Input
 - Output
 - Precision
 - Determinism

- Finiteness
- Correctness
- Generality

Example Pseudocode

Algorithm 4.1.1: Finding the Maximum of Three Numbers

Input: a, b, c Output: *large* (the largest of *a*, *b*, and *c*) max3(a,b,c) { 1. 2. large = a // if b is larger than large, update large 3. if (b > large)4. large = b// if *c* is larger than *large*, update *large* 5. if (c > large)6. large = c7. return large 8.

ł

Introduction

Another example

 An algorithm to find the largest value in a sequence

Algorithm 4.1.2: Finding the Maximum Value in a Sequence

```
Input: s, n

Output: large (the largest value in the sequence s)

max(s, n) \{

large = s_1

for i = 2 to n

if (s_i > large)

large = s_i

return large
```


Examples of Algorithms

17

- Searching
- Sorting
- Time and Space for Algorithms
- Randomized Algorithms

Searching

Algorithm 4.2.1: Text Search

```
Input: p (indexed from 1 to m), m, t (indexed from 1 to n), n
Output: i
```

```
text\_search(p, m, t, n) {
for i = 1 to n - m + 1 {
j = 1
```

// i is the index in t of the first character of the
// substring to compare with p, and j is the index in p

```
// the while loop compares t_i \cdots t_{i+m-1} and p_1 \cdots p_m
while (t_{i+j-1} == p_j) {
j = j + 1
if (j > m)
return i
}
return 0
```


Sorting

Algorithm 4.2.3: Insertion Sort

Input: s, n Output: *s* (sorted) insertion_sort(s, n) { for i = 2 to n { // save s_i so it can be inserted into the correct place $val = s_i$ j = i - 1// if $val < s_j$, move s_j right to make room for s_i while $(j \ge 1 \land val < s_j)$ { $S_{j+1} = S_{j}$ j = j - 1 $s_{j+1} = val // \text{ insert } val$

Time and Space for Algorithms

Resources

- Time
 - the number of steps
 - best-case time
 - worst-case time
 - average-case time

Space

the number of variables, length of the sequences involved

Randomized Algorithms

- Relaxing the requirements of an algorithm – Relaxing Finiteness
 - an operating system
 - Relaxing Determinism
 - those written for more than one processor
 - for a multiprocessor machine
 - for a distributed environment
 - making random decisions
 - Relaxing Generality and Correctness
 - solutions for practical problems

Randomized Algorithms

Example

shuffling the values in the sequence a₁, ..., a_n. *rand*(*i*,*j*): returns a random integer between *i* and *j*, inclusive.

Algorithm 4.2.4: Shuffle

Input: a, nOutput: a (shuffled) $shuffle(a, n) \{$ for i = 1 to n - 1 $swap(a_i, a_{rand(i,n)})$

Analysis of an algorithm

 a process of deriving estimates for the time and space needed to execute the algorithm

Example

- Given a set X of n elements, some labeled "red" and some labeled "black," we want to find the number of subsets of X that contain at least one red item.
- Since a set that has n elements has 2ⁿ subsets, the program, if it chooses to examine every subset, would require at least 2ⁿ units of time to execute.

Issues

- The time needed to execute an algorithm is a function of the input.
- But it is difficult to obtain an explicit formula for this function.
- We choose to use parameters that characterize the size of the input.
 - Example
 - If the input is a set containing *n* elements, we would say that the size of the input is *n*.
 - best-case, worst-case, average-case time

Definition

Let f and g be functions with domain {1, 2, 3, ...}.
We write

f(n) = O(g(n))and say that f(n) is of order at most g(n) or f(n) is big oh of g(n) if there exists a positive constant C_1 such that

 $|f(n)| \le C_1 |g(n)|$ for all but finitely many positive integers *n*. – We say that *g* is an asymptotic upper bound for *f*.

– We write

 $f(n) = \Omega(g(n))$ and say that f(n) is of order at least g(n) or f(n) is **omega** of g(n) if there exists a positive constant C_2 such that

 $|f(n)| \geq C_2|g(n)|$

for all but finitely many positive integers *n*.

We say that g is an asymptotic lower bound for f.
We write

 $f(n) = \Theta(g(n))$ and say that f(n) is of order g(n) or f(n) is theta of g(n)if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. - We say that g is an asymptotic tight bound for f.

Examples

- Since $60n^2 + 5n + 1 \le 60n^2 + 5n^2 + n^2 = 66n^2$ for all n ≥ 1, we may take $C_1 = 66$ to obtain $60n^2 + 5n + 1 = O(n^2)$.
- Since $60n^2 + 5n + 1 \ge 60n^2$ for all $n \ge 1$, we may take $C_2 = 60$ to obtain $60n^2 + 5n + 1 = \Omega(n^2)$.
- Since $60n^2 + 5n + 1 = O(n^2)$ and $60n^2 + 5n + 1 = \Omega(n^2)$, $60n^2 + 5n + 1 = \Theta(n^2)$

Summary

-0-0-0

- Equivalence Relations
- Matrices of Relations
- Algorithms
 - Introduction
 - Examples of Algorithms
 - Analysis of Algorithms

