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Matrices of Relations

« Example

— Let R, be the relation from X ={1,2,3}to Y =
{a,b} defined by R, = {(1,a), (2,b), (3,a), (3,b)},
and let R, be the relation from Y to Z = {x,y,z}
defined by R, = {(a,x), (a,y), (b,y), (b,2)}.

— The matrix of R, relative to the orderings 1, 2,
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— and the matrix of R, relative to the orderings

a,bandx,y, zis

X Z

Y
s e e §
A2:
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— The product of these matrices is
y
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* Interpretation
— The ikth entry in A;A, IS computed as

a b k

_ u
gy = Su + 1v
Vv

— If this value I1s nonzero, then either su or tv IS
nonzero.

— Suppose that su # 0. (The argument is similar if
tv=0.) Then s = 0 and u # 0. This means that
(1, a) e R, and (a,k) € R,. This implies that (1,k)
R, ° R;. We have shown that if the Ikth entry In
A A |s nonzero, then (i,k) € R, ° R;.
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— The converse is also true. Assume that (i,k) e

R, ° R;. Then, either
1. (I,a) e Ry and (a,k) € R, or
2. (i,b) € R, and (b,k) € R,.

—1If 1 holds,thens=1andu=1,sosu=1and
su + tv is nonzero. Similarly, if 2 holds, tv=1
and again we have su + tv nonzero. We have
shown that If (1,k) € R, ° Ry, then the ikth
entry in A;A, IS honzero.
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* Theorem

— Let R, be a relation from X to Y and let R, be a
relation from Y to Z. Choose orderings of X, Y, and
Z.

— Let A, be the matrix of R, and let A, be the matrix
of R, with respect to the orderings selected.

— The matrix of the relation R, ° R, with respect to
the orderings selected is obtained by replacing
each nonzero term in the matrix product A;A, by 1.

— Proof.

« Explained earlier through the interpretation.

— That is, the ikth entry in A;A, is nonzero if and only if (i,k) € R,
*Ry:
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« How to determine whether a relation R on a
set X IS

— transitive?

* If A is the matrix of R (relative to some ordering), we
compute A2. We then compare A and A2. The relation
R is transitive if and only if whenever entry i, j in A?is
nonzero, entry i, | in A Is also nonzero. The reason is
that entry i, j in A% is nonzero

. Now R is transitive if and
only if whenever (i,k) and (k,j) are in R, then (i,)) is in R.
But (i,)) i1s in R If and only if entry I, j in A Is nonzero.

* Therefore, R is transitive if and only if whenever entry |,
j in A? is nonzero, entry i, j in A is also nonzero.
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* Example
— The matrix of the relation R = {(a,a), (b,b), (c,c),

(d,d), (b,c), (c,b)} on {a,b,c,d}, relative to the

ordering a, b, ¢, d, Is .

o O O Bk
R O O O

1H |
1 1
— Its square Is Y

A2

O NN N O
O NN N O
L O O O

o O O Bk

— We see that whenever entry i, j in A% is nonzero,
entry I, ] In A is also nonzero. Therefore, R Is
transitive.
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* Example

— The matrix of the relation R = {(a,a), (b,b), (c,c),
(d,d), (a,c), (c,b)} on {a,b,c,d}, relative to the
ordering a, b, ¢, d, Is

1 0 1 O
O 1 0 O
A s
i e e ) O 1 1 O
— Its square Is 0100 0 0 0 1
A2 =
O 2 1 O
00000001

— The entry in row 1, column 2 of A% is nonzero, but
the corresponding entry in A is zero. Therefore, R
IS not transitive.
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Introduction

 Algorithm
— a finite sequence of instructions

« Characteristics of an algorithm
— Input
* |t receives input.
— Output
* |t produces output.

— Precision
* The steps are precisely stated.
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» Characteristics of an algorithm (continued)

— Determinism

 The Intermediate results of each step of execution
are unique and are determined only by the inputs
and the results of the preceding steps.

— FIniteness

* |t terminates; that Is, it stops after finitely many
Instructions have been executed.

— Correctness

* The output produced by the algorithm is correct;
that is, the algorithm correctly solves the problem.

— Generality
* |t applies to a set of inputs.
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 Example

— An algorithm to find the maximum of three
numbers a, b, and c:
1. large = a.
2. If b > large, then large = b.
3. If ¢ > large, then large = c.

— Properties =
+ Input  FIniteness
» Output * Correctness
» Precision * Generality

e Determinism
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« Example
— Pseudocode

Algorithm 4.1.1: Finding the Maximum of Three Numbers

Input: a,b,c
Output: large (the largest of a, b, and )
max3a,b,c) |
large = a
/41t b is larger than large, update large

if (b = large)
large = b
/4 1f ¢ is larger than large, update large
if (¢ = large)
large = ¢
return large
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seguence

Input: s, n

maxi(s,n) |

large = 5y
fori=2ton
if (51 = large)
large =
return large

Algorithm 4.1.

Introduction

* Another example
— An algorithm to find the largest value in a

2: Finding the Maximum Value in a Sequence

Output: large (the largest value in the sequence s)

5
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Examples of Algorithms

» Searching

« Sorting

* Time and Space for Algorithms
« Randomized Algorithms
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Searching

Algorithm 4.2.1: Text Search

Input: p (indexed from 1 to m}, m, t (indexed from
Lton)n
Output: i
text_searchip,m,t,n) |
fori=1ton—m+1/|
=1

/7 15 the index in § of the first character of the
// substring to compare with p, and j is the index in p

// the while loop compares £; - - - i1 and py - - - P
while (t;, ;1 == p;) |
J=J+1
if (j = m)
return i

|
]
|
i

return 0
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Sorting

Algorithm 4.2.3: Insertion Sort
[nput: s, n
Output: s (sorted)

insertion_sorti{s, n) {

i

fori=2ton {
[/ save s s0 it can be inserted into the correct place

vil = i

j=i-1

A val < 5, move 55 right to make room for s
! I1'

while (j = 1 »val < 5;) {
."T_I|'| 1 = ."T_If

J=J-1

val // insert val
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 Resources
— Time
» the number of steps
 best-case time
« worst-case time
e average-case time
— Space

« the number of variables, length of the sequences
iInvolved
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Randomized Algorithms

* Relaxing the requirements of an algorithm

— Relaxing Finiteness
e an operating system
— Relaxing Determinism

* those written for more than one processor
— for a multiprocessor machine
— for a distributed environment

* making random decisions

— Relaxing Generality and Correctness
» solutions for practical problems
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Randomized Algorithms

« Example
— shuffling the values in the sequence a,, ..., a,.

— rand(l,j): returns a random integer between i
and |, inclusive.

Algorithm 4.2.4: Shuffle

Input: a,n
Output:  a (shuffled)

shuffle(a,n) |
fori=1ton -1
SWap i, Arand(in) )
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* Analysis of an algorithm

— a process of deriving estimates for the time and
space needed to execute the algorithm

« Example

— Given a set X of n elements, some labeled “red”
and some labeled “black,” we want to find the
number of subsets of X that contain at least one
red item.

— Since a set that has n elements has 2" subsets,
the program, if it chooses to examine every
subset, would require at least 2" units of time to
execute.
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Analysis of Algorithms

e |Sssues

— The time needed to execute an algorithm is a
function of the input.

— But it is difficult to obtain an explicit formula
for this function.

— We choose to use parameters that
characterize the size of the input.

« Example

— If the input is a set containing n elements, we would say
that the size of the input is n.

* best-case, worst-case, average-case time
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Analysis of Algorithms

» Definition
— Let f and g be functions with domain {1, 2, 3, ...}.
— We write
f(n) = Ag(n))

and say that f(n) is of order at most g(n) or f(n) is
big oh of g(n) if there exists a positive constant C,

such that

[f(n)] < C4[g(n)|
for all but finitely many positive integers n.
— We say that g Iis an asymptotic upper bound for f.

- 4
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— We write

f(n) = Q(g(n))
and say that f(n) is of order at least g(n) or f(n) is
omega of g(n) If there exists a positive constant C,
such that

[t(n)] = C,[g(n)|
for all but finitely many positive integers n.
— We say that g Is an asymptotic lower bound for f.
— We write
f(n) = ©(g(n))
and say that f(n) is of order g(n) or f(n) is theta of g(n)
it 1(n) = Ag(n)) and f(n) = Q(g(n)).
— We say that g Is an asymptotic tight bound for f.
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« Examples

— Since 60n? + 5n + 1 < 60n? + 5n? + n? = 66N~
for all n > 1, we may take C, = 66 to obtain
60n? + 5n + 1 = O(n?).

— Since 60n? + 5n + 1 > 60n%foralln > 1, we
may take C, = 60 to obtain 60n? + 5n + 1 =
Q(n?).

— Since 60n? + 5n + 1 = O(n?) and 60n? + 5n +
1 =Q(n?), 60n? + 5n + 1 = ©(n?)

27



sSummary

— Q@@ -
« Equivalence  Algorithms
Relations — Introduction
« Matrices of Relations — Examples of
Algorithms
— Analysis of Algorithms
- J

Discrete Mathematics, 2008

28

Computer Science Division, KAIST



