
Jong C. Park

Computer Science Division, KAIST

Today’s Topics

Equivalence Relations

Matrices of Relations

Discrete Mathematics, 2008 Computer Science Division, KAIST2

3

• Example

– Let R1 be the relation from X = {1,2,3} to Y =

{a,b} defined by R1 = {(1,a), (2,b), (3,a), (3,b)},

and let R2 be the relation from Y to Z = {x,y,z}

defined by R2 = {(a,x), (a,y), (b,y), (b,z)}.

– The matrix of R1 relative to the orderings 1, 2,

3 and a, b is
a b

1 1 0

A1 = 2 0 1

3 1 1

4

– and the matrix of R2 relative to the orderings

a, b and x, y, z is

– The product of these matrices is

x Y z

A2 =

a 1 1 0

b 0 1 1

x y z

1 1 1 0

A1A2 = 2 0 1 1

3 1 2 1

5

• Interpretation
– The ikth entry in A1A2 is computed as

– If this value is nonzero, then either su or tv is
nonzero.

– Suppose that su  0. (The argument is similar if
tv  0.) Then s  0 and u  0. This means that
(i,a)  R1 and (a,k)  R2. This implies that (i,k) 
R2  R1. We have shown that if the ikth entry in
A1A2 is nonzero, then (i,k)  R2  R1.

a b k

i s t
u

= su + tv
v

6

– The converse is also true. Assume that (i,k) 

R2  R1. Then, either

1. (i,a)  R1 and (a,k)  R2 or

2. (i,b)  R1 and (b,k)  R2.

– If 1 holds, then s = 1 and u = 1, so su = 1 and

su + tv is nonzero. Similarly, if 2 holds, tv = 1

and again we have su + tv nonzero. We have

shown that if (i,k)  R2  R1, then the ikth

entry in A1A2 is nonzero.

7

• Theorem

– Let R1 be a relation from X to Y and let R2 be a
relation from Y to Z. Choose orderings of X, Y, and
Z.

– Let A1 be the matrix of R1 and let A2 be the matrix
of R2 with respect to the orderings selected.

– The matrix of the relation R2  R1 with respect to
the orderings selected is obtained by replacing
each nonzero term in the matrix product A1A2 by 1.

– Proof.
• Explained earlier through the interpretation.

– That is, the ikth entry in A1A2 is nonzero if and only if (i,k)  R2

 R1.

8

• How to determine whether a relation R on a
set X is

– transitive?
• If A is the matrix of R (relative to some ordering), we

compute A2. We then compare A and A2. The relation
R is transitive if and only if whenever entry i, j in A2 is
nonzero, entry i, j in A is also nonzero. The reason is
that entry i, j in A2 is nonzero if and only if there are
elements (i,k) and (k,j) in R. Now R is transitive if and
only if whenever (i,k) and (k,j) are in R, then (i,j) is in R.
But (i,j) is in R if and only if entry i, j in A is nonzero.

• Therefore, R is transitive if and only if whenever entry i,
j in A2 is nonzero, entry i, j in A is also nonzero.

9

• Example
– The matrix of the relation R = {(a,a), (b,b), (c,c),

(d,d), (b,c), (c,b)} on {a,b,c,d}, relative to the
ordering a, b, c, d, is

– Its square is

– We see that whenever entry i, j in A2 is nonzero,
entry i, j in A is also nonzero. Therefore, R is
transitive.

1 0 0 0

A =
0 1 1 0

0 1 1 0

0 0 0 1

1 0 0 0

A2 =
0 2 2 0

0 2 2 0

0 0 0 1

10

• Example
– The matrix of the relation R = {(a,a), (b,b), (c,c),

(d,d), (a,c), (c,b)} on {a,b,c,d}, relative to the
ordering a, b, c, d, is

– Its square is

– The entry in row 1, column 2 of A2 is nonzero, but
the corresponding entry in A is zero. Therefore, R
is not transitive.

1 0 1 0

A =
0 1 0 0

0 1 1 0

0 0 0 1

1 1 1 0

A2 =
0 1 0 0

0 2 1 0

0 0 0 1

Discrete Mathematics, 2008 Computer Science Division, KAIST11

Today’s Topics

Introduction

Examples of Algorithms

Analysis of Algorithms

12

• Algorithm

– a finite sequence of instructions

• Characteristics of an algorithm

– Input

• It receives input.

– Output

• It produces output.

– Precision

• The steps are precisely stated.

13

• Characteristics of an algorithm (continued)
– Determinism

• The intermediate results of each step of execution
are unique and are determined only by the inputs
and the results of the preceding steps.

– Finiteness
• It terminates; that is, it stops after finitely many

instructions have been executed.

– Correctness
• The output produced by the algorithm is correct;

that is, the algorithm correctly solves the problem.

– Generality
• It applies to a set of inputs.

• Example

– An algorithm to find the maximum of three
numbers a, b, and c:

1. large = a.

2. If b > large, then large = b.

3. If c > large, then large = c.

– Properties
• Input

• Output

• Precision

• Determinism

14

• Finiteness

• Correctness

• Generality

15

• Example

– Pseudocode

16

• Another example

– An algorithm to find the largest value in a

sequence

17

• Searching

• Sorting

• Time and Space for Algorithms

• Randomized Algorithms

18

19

20

• Resources

– Time

• the number of steps

• best-case time

• worst-case time

• average-case time

– Space

• the number of variables, length of the sequences

involved

21

• Relaxing the requirements of an algorithm

– Relaxing Finiteness

• an operating system

– Relaxing Determinism

• those written for more than one processor

– for a multiprocessor machine

– for a distributed environment

• making random decisions

– Relaxing Generality and Correctness

• solutions for practical problems

22

• Example

– shuffling the values in the sequence a1, ..., an.

– rand(i,j): returns a random integer between i

and j, inclusive.

23

• Analysis of an algorithm

– a process of deriving estimates for the time and
space needed to execute the algorithm

• Example

– Given a set X of n elements, some labeled “red”
and some labeled “black,” we want to find the
number of subsets of X that contain at least one
red item.

– Since a set that has n elements has 2n subsets,
the program, if it chooses to examine every
subset, would require at least 2n units of time to
execute.

24

• Issues

– The time needed to execute an algorithm is a
function of the input.

– But it is difficult to obtain an explicit formula
for this function.

– We choose to use parameters that
characterize the size of the input.

• Example
– If the input is a set containing n elements, we would say

that the size of the input is n.

• best-case, worst-case, average-case time

25

• Definition

– Let f and g be functions with domain {1, 2, 3, ...}.

– We write

f(n) = (g(n))

and say that f(n) is of order at most g(n) or f(n) is
big oh of g(n) if there exists a positive constant C1

such that

|f(n)|  C1|g(n)|

for all but finitely many positive integers n.

– We say that g is an asymptotic upper bound for f.

26

– We write

f(n) = (g(n))

and say that f(n) is of order at least g(n) or f(n) is
omega of g(n) if there exists a positive constant C2
such that

|f(n)|  C2|g(n)|

for all but finitely many positive integers n.

– We say that g is an asymptotic lower bound for f.

– We write

f(n) = (g(n))

and say that f(n) is of order g(n) or f(n) is theta of g(n)
if f(n) = (g(n)) and f(n) = (g(n)).

– We say that g is an asymptotic tight bound for f.

27

• Examples

– Since 60n2 + 5n + 1  60n2 + 5n2 + n2 = 66n2

for all n  1, we may take C1 = 66 to obtain

60n2 + 5n + 1 = O(n2).

– Since 60n2 + 5n + 1  60n2 for all n  1, we

may take C2 = 60 to obtain 60n2 + 5n + 1 =

(n2).

– Since 60n2 + 5n + 1 = O(n2) and 60n2 + 5n +

1 = (n2), 60n2 + 5n + 1 = (n2)

• Equivalence

Relations

• Matrices of Relations

Discrete Mathematics, 2008 Computer Science Division, KAIST28

• Algorithms

– Introduction

– Examples of

Algorithms

– Analysis of Algorithms

