- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics

Equivalence Relations

Matrices of Relations

-0.0.

Relations

Matrices of Relations

- Example
- Let R_{1} be the relation from $X=\{1,2,3\}$ to $Y=$ $\{a, b\}$ defined by $R_{1}=\{(1, a),(2, b),(3, a),(3, b)\}$, and let R_{2} be the relation from Y to $Z=\{x, y, z\}$ defined by $R_{2}=\{(a, x),(a, y),(b, y),(b, z)\}$.
- The matrix of R_{1} relative to the orderings 1,2 , 3 and a, b is

$$
A_{1}=\begin{array}{ccc}
& a & b \\
1 & 1 & 0 \\
2 & 0 & 1 \\
3 & 1 & 1
\end{array}
$$

Matrices of Relations

- and the matrix of R_{2} relative to the orderings a, b and x, y, z is

$$
A_{2}=\begin{array}{llll}
a & 1 & 1 & 0 \\
b & 0 & 1 & 1
\end{array}
$$

- The product of these matrices is

$A_{1} A_{2}=$| | x | y | z |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 |
| 2 | 0 | 1 | 1 |
| 3 | 1 | 2 | 1 |

Matrices of Relations

- Interpretation
- The ikth entry in $A_{1} A_{2}$ is computed as

$$
\begin{array}{lll}
a & b & k \\
s & t & u \\
v & =s u+t v
\end{array}
$$

- If this value is nonzero, then either su or $t v$ is nonzero.
- Suppose that $s u \neq 0$. (The argument is similar if $t v \neq 0$.) Then $s \neq 0$ and $u \neq 0$. This means that $(i, a) \in R_{1}$ and $(a, k) \in R_{2}$. This implies that $(i, k) \in$ $R_{2} \circ R_{1}$. We have shown that if the ikth entry in $A_{1} A_{2}$ is nonzero, then $(i, k) \in R_{2}{ }^{\circ} R_{1}$.

Matrices of Relations

- The converse is also true. Assume that $(i, k) \in$ $R_{2}{ }^{\circ} R_{1}$. Then, either

1. $(i, a) \in R_{1}$ and $(a, k) \in R_{2}$ or
2. $(i, b) \in R_{1}$ and $(b, k) \in R_{2}$.

- If 1 holds, then $s=1$ and $u=1$, so $s u=1$ and $s u+t v$ is nonzero. Similarly, if 2 holds, $t v=1$ and again we have $s u+t v$ nonzero. We have shown that if $(i, k) \in R_{2}{ }^{\circ} R_{1}$, then the ikth entry in $A_{1} A_{2}$ is nonzero.

Matrices of Relations

- Theorem
- Let R_{1} be a relation from X to Y and let R_{2} be a relation from Y to Z. Choose orderings of X, Y, and Z.
- Let A_{1} be the matrix of R_{1} and let A_{2} be the matrix of R_{2} with respect to the orderings selected.
- The matrix of the relation $R_{2}{ }^{\circ} R_{1}$ with respect to the orderings selected is obtained by replacing each nonzero term in the matrix product $A_{1} A_{2}$ by 1 .
- Proof.
- Explained earlier through the interpretation.
- That is, the ikth entry in $A_{1} A_{2}$ is nonzero if and only if $(i, k) \in R_{2}$ ${ }^{\circ} R_{1}$.

Matrices of Relations

- How to determine whether a relation R on a set X is
- transitive?
- If A is the matrix of R (relative to some ordering), we compute A^{2}. We then compare A and A^{2}. The relation R is transitive if and only if whenever entry i, j in A^{2} is nonzero, entry i, j in A is also nonzero. The reason is that entry i, j in A^{2} is nonzero
elements (i, k) and (k, j) in R. Now R is transitive if and only if whenever (i, k) and (k, j) are in R, then (i, j) is in R. But (i, j) is in R if and only if entry i, j in A is nonzero.
- Therefore, R is transitive if and only if whenever entry i, j in A^{2} is nonzero, entry i, j in A is also nonzero.

Matrices of Relations

- Example
- The matrix of the relation $R=\{(a, a),(b, b),(c, c)$, $(d, d),(b, c),(c, b)\}$ on $\{a, b, c, d\}$, relative to the ordering a, b, c, d, is
- Its square is A $^{2}=\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0\end{array} \quad \begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}$
- We see that whenever entry i, j in A^{2} is nonzero, entry i, j in A is also nonzero. Therefore, R is transitive.

Matrices of Relations

- Example
- The matrix of the relation $R=\{(a, a),(b, b),(c, c)$, $(d, d),(a, c),(c, b)\}$ on $\{a, b, c, d\}$, relative to the ordering a, b, c, d, is
- Its square is $A_{A^{2}}=\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array} \quad \begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}$
- The entry in row 1 , column 2 of A^{2} is nonzero, but the corresponding entry in A is zero. Therefore, R is not transitive.

Today's Topics
Introduction
Examples of Algorithms
Analysis of Algorithms

00000

Algorithms

Introduction

- Algorithm
- a finite sequence of instructions
- Characteristics of an algorithm
- Input
- It receives input.
- Output
- It produces output.
- Precision
- The steps are precisely stated.

Introduction

- Characteristics of an algorithm (continued)
- Determinism
- The intermediate results of each step of execution are unique and are determined only by the inputs and the results of the preceding steps.
- Finiteness
- It terminates; that is, it stops after finitely many instructions have been executed.
- Correctness
- The output produced by the algorithm is correct; that is, the algorithm correctly solves the problem.
- Generality
- It applies to a set of inputs.

Introduction

- Example
- An algorithm to find the maximum of three numbers a, b, and c :

1. large = a.
2. If $b>$ large, then large $=b$.
3. If $c>$ large, then large $=c$.

- Properties
- Input
- Output
- Precision
- Finiteness
- Correctness
- Generality
- Determinism

Introduction

- Example
- Pseudocode

Algorithm 4.1.1: Finding the Maximum of Three Numbers
Input: a, b, c
Output: large (the largest of a, b, and c)

1. $\max 3(a, b, c)\{$
2. large $=a$
$/ /$ if b is larger than large, update large
3. if $(b>$ large $)$
4. \quad large $=b$
$/ /$ if c is larger than large, update large
5. if $(c>$ large $)$
6. \quad large $=c$
7. return large
8. \}

Introduction

- Another example
- An algorithm to find the largest value in a sequence

Algorithm 4.1.2: Finding the Maximum Value in a Sequence
Input: s, n
Output: large (the largest value in the sequence s)
$\max (s, n)$ i
large $=s_{1}$
for $i=2$ to n
if $\left(s_{i}>\right.$ large $)$
large $=s_{i}$
return large
I

Examples of Algorithms

- Searching
- Sorting
- Time and Space for Algorithms
- Randomized Algorithms

Searching

```
Algorithm 4.2.1: Text Search
    Input: p}\mathrm{ (indexed from 1 to m), m,t (indexed from
        l to n), n
Output: i
text_search( }p,m,t,n)
    for i=1 to }n-m+1
        j=1
        // i is the index in t of the first character of the
        // substring to compare with p}\mathrm{ , and j}\mathrm{ is the index in p
        // the while loop compares }\mp@subsup{t}{i}{}\cdots\mp@subsup{t}{i+m-1}{}\mathrm{ and }\mp@subsup{p}{1}{}\cdots\mp@subsup{p}{m}{
        while (ti+j-1}==\mp@subsup{p}{j}{})
        j=j+1
        if (j>m)
            return i
        }
    }
    return 0
}
```


Sorting

```
Algorithm 4.2.3: Insertion Sort
    Input: \(s, n\)
Output: \(s\) (sorted)
insertion_sort \((s, n)\{\)
    for \(i=2\) to \(n\{\)
        \(/ /\) save \(s_{i}\) so it can be inserted into the correct place
        \(v a l=s_{i}\)
        \(j=i-1\)
        \(/ /\) if \(\mathrm{val}<s_{j}\), move \(s_{j}\) right to make room for \(s_{i}\)
        while \(\left(j \geq 1 \wedge\right.\) val \(\left.<s_{j}\right)\) \{
                \(s_{j+1}=s_{j}\)
                \(j=j-1\)
            \}
            \(s_{j+1}=\) val // insert val
    \}
\}
```


Time and Space for Algorithms

- Resources
- Time
- the number of steps
- best-case time
- worst-case time
- average-case time
- Space
- the number of variables, length of the sequences involved

Randomized Algorithms

- Relaxing the requirements of an algorithm
- Relaxing Finiteness
- an operating system
- Relaxing Determinism
- those written for more than one processor
- for a multiprocessor machine
- for a distributed environment
- making random decisions
- Relaxing Generality and Correctness
- solutions for practical problems

Randomized Algorithms

- Example
- shuffling the values in the sequence a_{1}, \ldots, a_{n}.
- rand(i, y): returns a random integer between i and j, inclusive.

Algorithm 4.2.4: Shuffle

```
    Input: a,n
Output: a (shuffled)
shuffle(a,n) {
    for }i=1\mathrm{ to }n-
        swap(ai, arand(i,n)}
}
```


Analysis of Algorithms

- Analysis of an algorithm
- a process of deriving estimates for the time and space needed to execute the algorithm
- Example
- Given a set X of n elements, some labeled "red" and some labeled "black," we want to find the number of subsets of X that contain at least one red item.
- Since a set that has n elements has 2^{n} subsets, the program, if it chooses to examine every subset, would require at least 2^{n} units of time to execute.

Analysis of Algorithms

- Issues
- The time needed to execute an algorithm is a function of the input.
- But it is difficult to obtain an explicit formula for this function.
- We choose to use parameters that characterize the size of the input.
- Example
- If the input is a set containing n elements, we would say that the size of the input is n.
- best-case, worst-case, average-case time

Analysis of Algorithms

- Definition
- Let f and g be functions with domain $\{1,2,3, \ldots\}$.
- We write

$$
f(n)=O(g(n))
$$

and say that $f(n)$ is of order at most $g(n)$ or $f(n)$ is big oh of $g(n)$ if there exists a positive constant C_{1} such that

$$
|f(n)| \leq C_{1}|g(n)|
$$

for all but finitely many positive integers n.

- We say that g is an asymptotic upper bound for f.

Analysis of Algorithms

- We write

$$
f(n)=\Omega(g(n))
$$

and say that $f(n)$ is of order at least $g(n)$ or $f(n)$ is omega of $g(n)$ if there exists a positive constant C_{2} such that

$$
|f(n)| \geq C_{2}|g(n)|
$$

for all but finitely many positive integers n.

- We say that g is an asymptotic lower bound for f.
- We write

$$
f(n)=\Theta(g(n))
$$

and say that $f(n)$ is of order $g(n)$ or $f(n)$ is theta of $g(n)$ if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

- We say that g is an asymptotic tight bound for f.

Analysis of Algorithms

- Examples
- Since $60 n^{2}+5 n+1 \leq 60 n^{2}+5 n^{2}+n^{2}=66 n^{2}$ for all $n \geq 1$, we may take $C_{1}=66$ to obtain $60 n^{2}+5 n+1=O\left(n^{2}\right)$.
- Since $60 n^{2}+5 n+1 \geq 60 n^{2}$ for all $n \geq 1$, we may take $C_{2}=60$ to obtain $60 n^{2}+5 n+1=$ $\Omega\left(n^{2}\right)$.
- Since $60 n^{2}+5 n+1=O\left(n^{2}\right)$ and $60 n^{2}+5 n+$ $1=\Omega\left(n^{2}\right), 60 n^{2}+5 n+1=\Theta\left(n^{2}\right)$

Summary

- Equivalence Relations
- Matrices of Relations
- Algorithms
- Introduction
- Examples of Algorithms
- Analysis of Algorithms

