- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics
 Analysis of Algorithms
 Recursive Algorithms

-の・• •

Algorithms

Analysis of Algorithms

- Theorem
- Let $p(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n+a_{0}$ be a polynomial in n of degree k, where each a_{i} is nonnegative and $a_{k}>0$. Then $p(n)=\Theta\left(n^{k}\right)$.
- Proof.
- We first show that $p(n)=O\left(n^{k}\right)$. Let

$$
C_{1}=a_{k}+a_{k-1}+\ldots+a_{1}+a_{0} .
$$

Then for all $n, p(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n+a_{0}$

$$
\leq a_{k} n^{k}+a_{k-1} n^{k}+\ldots+a_{1} n^{k}+a_{0} n^{k}
$$

Therefore, $\left.p(n)=\overline{\bar{O}}\left(n^{k}\right)_{k}+a_{k-1}+\ldots+a_{1}+a_{0}.\right) n^{k}=C_{1} n^{k}$.

- Next, we show that $p(n)=\Omega\left(n^{k}\right)$. For all n,

$$
p(n)=a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{1} n+a_{0} \geq a_{k} n^{k}=C_{2} n^{k},
$$

where $C_{2}=a_{k}$. Therefore, $p(n)=\Omega\left(n^{k}\right)$.

- It follows that $p(n)=\Theta\left(n^{k}\right)$.

Analysis of Algorithms

- Note
- We shall use Ig n to denote $\log _{2} n$ (the logarithm of n to the base 2).
- Example
- Find the asymptotic tight bound for $2 n+3$ lg n.
- Since $\lg n<n$ for all $n \geq 1,2 n+3 \lg n<2 n+3 n=$ $5 n$ for all $n \geq 1$. Thus, $2 n+3 \lg n=O(n)$.
- Also, $2 n+3 \lg n \geq 2 n$ for all $n \geq 1$.
- Thus, $2 n+3 \lg n=\Omega(n)$.
- Therefore, $2 n+3 \lg n=\Theta(n)$.

Analysis of Algorithms

- Example
- If $a>1$ and $b>1$ (to ensure that $\log _{b} a>0$), by the change-of-base formula for logarithms, $\log _{b} n$ $=\log _{b}$ a $\log _{a} n$ for all $n \geq 1$.
- Therefore, $\log _{b} n \leq C \log _{a} n$ for all $n \geq 1$, where C $=\log _{b} a$. Thus, $\log _{b} n=O\left(\log _{a} n\right)$.
- Also, $\log _{b} n \geq C \log _{a} n$ for all $n \geq 1$; so $\log _{b} n=$ $\Omega\left(\log _{a} n\right)$.
- Since $\log _{b} n=O\left(\log _{a} n\right)$ and $\log _{b} n=\Omega\left(\log _{a} n\right)$, we conclude that $\log _{b} n=\Theta\left(\log _{a} n\right)$.
- Note
- For this reason, we sometimes simply write log without specifying the base.

Analysis of Algorithms

- Example
- Find the asymptotic tight bound for $f(n)=1+2$ $+\ldots+n$.
- First, $f(n)=O\left(n^{2}\right)$, since $1+2+\ldots+n \leq n+n+\ldots+n$ = $n \cdot n=n^{2}$ for all $n \geq 1$.
- Likewise, $f(n)=\Omega(n)$, since $1+2+\ldots+n \geq 1+1+\ldots+$ $1=n$ for all $n \geq 1$. However, we cannot deduce a Θ estimate for $f(n)$ with this lower bound, since $n^{2} \neq n$. Thus, we need a tighter lower bound.
- But by throwing away the first half of the terms, we get

$$
\begin{aligned}
f(n) & \geq\lceil n / 2\rceil+\ldots+(n-1)+n \\
& \geq\lceil n / 2\rceil+\ldots+\lceil n / 2\rceil+\lceil n / 2\rceil \\
& =\lceil(n+1) / 2\rceil\lceil n / 2\rceil \geq(n / 2)(n / 2) \\
& =n^{2} / 4
\end{aligned}
$$

for all $n \geq 1$. Thus $f(n)=\Omega\left(n^{2}\right)$.

- Therefore, $f(n)=\Theta\left(n^{2}\right)$.

Analysis of Algorithms

- Examples
- Find the asymptotic tight bound for $f(n)=1^{k}+$ $2^{k}+\ldots+n^{k}$.
- $f(n)=\Theta\left(n^{k+1}\right)$
- Show that $\lg n!=\Theta(n \lg n)$.
- Proof sketch.

$$
\begin{aligned}
& -\lg n!=\lg n+\lg (n-1)+\ldots+\lg 2+\lg 1 \\
& \quad \leq \lg n+\lg n+\ldots+\lg n+\lg n=n \lg n \text { for all } n \geq 1 .
\end{aligned}
$$

Analysis of Algorithms

- Example
- Show that if $f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n))$, then $f(n)=\Theta(h(n))$.
- Proof.
- Because $f(n)=\Theta(g(n))$, there are constants C_{1} and C_{2} such that $C_{1}|g(n)| \leq|f(n)| \leq C_{2}|g(n)|$ for all but finitely many positive integers n.
- Because $g(n)=\Theta(h(n))$, there are constants C_{3} and C_{4} such that $C_{3}|h(n)| \leq|g(n)| \leq C_{4}|h(n)|$ for all but finitely many positive integers n. Therefore, $C_{1} C_{3}|h(n)| \leq$ $C_{1}|g(n)| \leq|f(n)| \leq C_{2}|g(n)| \leq C_{2} C_{4}|h(n)|$ for all but finitely many positive integers n.
- It follows that $f(n)=\Theta(h(n))$.

Analysis of Algorithms

- Definition
- If an algorithm requires $t(n)$ units of time to terminate in the best case for an input of size n and $t(n)=O(g(n))$, we say that the best-case time required by the algorithm is of order at most $g(n)$ or that the best-case time required by the algorithm is $O(g(n))$.
- If an algorithm requires $t(n)$ units of time to terminate in the worst case for an input of size n and $t(n)=O(g(n))$, we say that the worst-case time required by the algorithm is of order at most $g(n)$ or that the worst-case time required by the algorithm is $O(g(n))$.

Analysis of Algorithms

- If an algorithm requires $t(n)$ units of time to terminate in the average case for an input of size n and $t(n)=O(g(n))$, we say that the average -case time required by the algorithm is of order at most $g(n)$ or that the average case time required by the algorithm is $O(g(n))$.

Analysis of Algorithms

- Example
- Determine, in theta notation, the best-case, worst-case, and average-case times required to execute the following algorithm.

```
Algorithm 4.3.17: Searching an Unordered Sequence
    Input: }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\ldots,\mp@subsup{s}{n}{},n\mathrm{ , and key (the value to search
        for)
Output: The index of key, or if key is not found, 0
1. linear_search(s,n, key) {
2. for i=1 to }
3. if (key == si)
4.
5. return 0 // unsuccessful search
6.
```


Recursive Algorithms

- Note
- A recursive function (pseudocode) is a function that invokes itself.
- A recursive algorithm is an algorithm that contains a recursive function.
- Example
$-n!=n(n-1)(n-2) \cdots 2 \cdot 1=n \cdot(n-1)!$

Recursive Algorithms

- Theorem
- The following algorithm returns the value of $n!, n \geq 0$.
- Proof.
- Use induction on n.

Algorithm 4.4.2: Computing n Factorial

1. factorial (n) \{
2. if $(n==0)$
3. return 1
4. return n * factorial $(n-1)$
$5 . \quad$ y

Recursive Algorithms

- Example
- A robot can take steps of 1 meter or 2 meters.
- Find the number of ways the robot can walk n meters.

```
Algorithm 4.4.6: Robot Walking
    Input: n
    Output: walk(n)
    walk(n) {
    if( }n==1\veen==2
        return }
    return walk(n-1) + walk(n-2)
}
```


Recursive Algorithms

- Example
- Prove that the "Robot Walking" algorithm is correct.
- Note
- Fibonacci sequence $\left\{f_{n}\right\}$
- $f_{1}=1, f_{2}=1, f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 3$.
- Show that walk $(n)=f_{n+1}$ for all $n \geq 1$.
- Proof.
- Use induction on n.
- Use mathematical induction to show that

$$
\sum_{k=1}^{n} f_{k}=f_{n+2}-1 \text { for all } n \geq 1 .
$$

Summary

- Analysis of Algorithms
- Recursive Algorithms

