
Jong C. Park

Computer Science Division, KAIST

Discrete Mathematics, 2008 Computer Science Division, KAIST2

Today’s Topics

Analysis of Algorithms

Recursive Algorithms

3

• Theorem

– Let p(n) = akn
k + ak-1n

k-1 + ... + a1n + a0 be a polynomial in

n of degree k, where each ai is nonnegative and ak > 0.

Then p(n) = (nk).
– Proof.

• We first show that p(n) = O(nk). Let
C1 = ak + ak-1 + ... + a1 + a0.

Then for all n, p(n) = akn
k + ak-1n

k-1 + ... + a1n + a0

 akn
k + ak-1n

k + ... + a1n
k + a0n

k

= (ak + ak-1 + ... + a1 + a0.)n
k = C1n

k.
Therefore, p(n) = O(nk).

• Next, we show that p(n) = (nk). For all n,
p(n) = akn

k + ak-1n
k-1 + ... + a1n + a0  akn

k = C2n
k,

where C2 = ak. Therefore, p(n) = (nk).
• It follows that p(n) = (nk).

4

• Note

– We shall use lg n to denote log2 n (the
logarithm of n to the base 2).

• Example

– Find the asymptotic tight bound for 2n + 3 lg
n.

• Since lg n < n for all n  1, 2n + 3 lg n < 2n + 3n =
5n for all n  1. Thus, 2n + 3 lg n = O(n).

• Also, 2n + 3 lg n  2n for all n  1.

• Thus, 2n + 3 lg n = (n).

• Therefore, 2n + 3 lg n = (n).

5

• Example
– If a > 1 and b > 1 (to ensure that logb a > 0), by

the change-of-base formula for logarithms, logb n
= logb a loga n for all n  1.

– Therefore, logb n  C loga n for all n  1, where C
= logb a. Thus, logb n = O(loga n).

– Also, logb n  C loga n for all n  1; so logb n =
(loga n).

– Since logb n = O(loga n) and logb n = (loga n),
we conclude that logb n = (loga n).

• Note
– For this reason, we sometimes simply write log

without specifying the base.

6

• Example
– Find the asymptotic tight bound for f(n) = 1 + 2

+ ... + n.
• First, f(n) = O(n2), since 1 + 2 + ... + n  n + n + ... + n

= n·n = n2 for all n  1.
• Likewise, f(n) = (n), since 1 + 2 + ... + n  1 + 1 + ... +

1 = n for all n  1. However, we cannot deduce a -
estimate for f(n) with this lower bound, since n2  n.
Thus, we need a tighter lower bound.

• But by throwing away the first half of the terms, we get
f(n)  n/2 + ... + (n – 1) + n

 n/2 + ... + n/2 + n/2
= (n + 1)/2 n/2  (n/2)(n/2)
= n2/4

for all n  1. Thus f(n) = (n2).
• Therefore, f(n) = (n2).

7

• Examples

– Find the asymptotic tight bound for f(n) = 1k +

2k + ... + nk.

• f(n) = (nk+1)

– Show that lg n! = (n lg n).

• Proof sketch.

– lg n! = lg n + lg (n-1) + … + lg 2 + lg 1

 lg n + lg n + … + lg n + lg n = n lg n for all n  1.

8

• Example

– Show that if f(n) = (g(n)) and g(n) = (h(n)),
then f(n) = (h(n)).

– Proof.
• Because f(n) = (g(n)), there are constants C1 and C2

such that C1|g(n)|  |f(n)|  C2|g(n)| for all but finitely
many positive integers n.

• Because g(n) = (h(n)), there are constants C3 and C4

such that C3|h(n)|  |g(n)|  C4|h(n)| for all but finitely
many positive integers n. Therefore, C1C3|h(n)| 
C1|g(n)|  |f(n)|  C2|g(n)|  C2C4|h(n)| for all but finitely
many positive integers n.

• It follows that f(n) = (h(n)).

9

• Definition
– If an algorithm requires t(n) units of time to

terminate in the best case for an input of size n
and t(n) = O(g(n)), we say that the best-case time
required by the algorithm is of order at most g(n)
or that the best-case time required by the
algorithm is O(g(n)).

– If an algorithm requires t(n) units of time to
terminate in the worst case for an input of size n
and t(n) = O(g(n)), we say that the worst-case
time required by the algorithm is of order at most
g(n) or that the worst-case time required by the
algorithm is O(g(n)).

10

– If an algorithm requires t(n) units of time to

terminate in the average case for an input of

size n and t(n) = O(g(n)), we say that the

average -case time required by the algorithm

is of order at most g(n) or that the average -

case time required by the algorithm is O(g(n)).

11

• Example

– Determine, in theta notation, the best-case,

worst-case, and average-case times required

to execute the following algorithm.

12

• Note

– A recursive function (pseudocode) is a

function that invokes itself.

– A recursive algorithm is an algorithm that

contains a recursive function.

• Example

– n! = n(n – 1)(n – 2)···2·1 = n·(n – 1)!

13

• Theorem

– The following algorithm returns the value of

n!, n  0.

• Proof.

– Use induction on n.

14

• Example

– A robot can take steps of 1 meter or 2 meters.

– Find the number of ways the robot can walk n

meters.

15

• Example

– Prove that the “Robot Walking” algorithm is
correct.

• Note

– Fibonacci sequence {fn}
• f1 = 1, f2 = 1, fn = fn-1 + fn-2 for all n  3.

– Show that walk(n) = fn+1 for all n  1.
• Proof.

– Use induction on n.

– Use mathematical induction to show that

n
k=1fk = fn+2 – 1 for all n  1.

• Analysis of

Algorithms

• Recursive Algorithms

Discrete Mathematics, 2008 Computer Science Division, KAIST16

