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2 A A
Analysis of Algorithms

* Theorem
— Let p(n) = a.nk + a,_,nkt + ... + a,n + a5 be a polynomial in

n of degree k, where each a, is nonnegative and a, > 0.
Then p(n) = B(nX).
— Proof.
« We first show that p(n) = O(nX). Let
C,=a +a,+..+a; +a,.
Then for all n, p(n) =a,nk+ a, Nkt + ... +a,n + a,
<ank+a,,nk+ ... +a,nk+a,nk

R I SR e = ., K,
Therefore, p(n):O(rgk)k. “t 1+ @) 1

« Next, we show that p(n) = Q(n¥). For all n,
p(n) = a.nk +a, Nkt + ... +an+a,>ank=C,nk
where C, = a,. Therefore, p(n) = Q(nk).
« It follows that p(n) = ©(n¥).
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Analysis of Algorithms

e Note

— We shall use Ig n to denote log, n (the
logarithm of n to the base 2).

« Example

— Find the asymptotic tight bound for 2n + 3 Ig
n.

 Sincelgn<nforalln>1,2n+3Ign<2n+ 3n=
5nforalln>1. Thus, 2n + 3 Ig n = O(n).

« Also,2n+3Ign=>2nforalln>1.
e Thus, 2n + 3 1lg n = Q(n).
* Therefore, 2n + 3 1g n = ®(n).
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Analysis of Algorithms

* Example

—Ifa>1andb > 1 (to ensure that log, a > 0), by
the change-of-base formula for logarithms, log, n
=log, a log, nfor alln > 1.

— Therefore, log, n < C log, nfor alln>1, where C
= log, a. Thus, log, n = O(log, n).
— Also, log,n>C log, nforalln>1; solog, n=
Q(log, n).
— Since log, n = O(log, n) and log, n = OQ(log, n),
we conclude that log, n = ©(log, n).
* Note

— For this reason, we sometimes simply write log
without specifying the base.
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Analysis of Algorithms

« Example

— Find the asymptotic tight bound for f(n) = 1 + 2
g

First, f(n; =0(n?),sincel+2+..+n<n+n+..+n
=n-n=n4foralln> 1.

Likewise, f?n) = Q('r_ll), sincel+2+..+n>1+1+...
1 =nforalln > 1. However, we cannot deduce a ®-
estimate for f(n) with this lower bound, since n? = n.
Thus, we need a tighter lower bound.

But by throwing away the first half of the terms, we get
f(ny>[n/2]l+...+(n=1) +n
[ni2]+ ...+ [ni2]+ [n/2]
[(n+1)/21[n/2] > (n/2)(n/2)
= n?%/4
for all n > 1. Thus f(n) = Q(n?).
Therefore, f(n) = ©(n?).
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Analysis of Algorithms

« Examples
— Find the asymptotic tight bound for f(n) = 1k +
2K + ... + nX,
o f(n) — @(nk+1)
— Show that Ig n! = ®(n Ig n).
* Proof sketch.

—Ilgn'=Ilgn+ig(n-1)+...+lg2+Ig 1
<lgn+lIlgn+...+Ilgn+ign=nilgnforalln>1.
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« Example

— Show that If f(n) = ®(g(n)) and g(n) = ®(h(n)),
then f(n) = O(h(n)).

— Proof.

* Because f(n) = ®(g(n)), there are constants C, and C,
such that C,|g(n)| < |f(n)]| < C,|g(n)]| for all but finitely
many positive integers n.

» Because g(n) = ®(h(n)), there are constants C; and C,
such that C;|h(n)| < |g(n)| < C,|h(n)| for all but finitely
many positive integers n. Therefore, C,C;|h(n)| <
C.lg(n)| < [f(n)| < C,|g(n)| < C,C,|h(n)| for all but finitely
many positive integers n.

* |t follows that f(n) = ®(h(n)).
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* Definition
— If an algorithm requires t(n) units of time to
terminate in the best case for an input of size n
and t(n) = O(g(n)), we say that the best-case time
required by the algorithm Is of order at most g(n)

or that the best-case time required by the
algorithm is O(g(n)).

— If an algorithm requires t(n) units of time to
terminate in the worst case for an input of size n
and t(n) = O(g(n)), we say that the worst-case
time required by the algorithm is of order at most
g(n) or that the worst-case time required by the
algorithm is O(g(n)).
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Analysis of Algorithms

— If an algorithm requires t(n) units of time to
terminate in the average case for an input of
size n and t(n) = O(g(n)), we say that the
average -case time required by the algorithm
Is of order at most g(n) or that the average -
case time required by the algorithm is O(g(n)).
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Analysis of Algorithms
« Example

— Determine, In theta notation, the best-case,
worst-case, and average-case times required
to execute the following algorithm.

Algorithm 4.3.17: Searching an Unordered Sequence

Input: £y,52,...,5;. 1, and key (the value to search
for)
Output: The index of key, or if key is not found, 0

1. linear_searchis, n, key) {
: fori=1tomn
if (key == si)
return i // successful search
return 0 // unsuccessful search
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Recursive Algorithms

e Note

— A recursive function (pseudocode) Is a
function that invokes itself.

— A recursive algorithm is an algorithm that
contains a recursive function.

« Example
—nl=nin-1)(n-2)---2:1 =n:(n-1)!
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Recursive Algorithms

* Theorem
— The following algorithm returns the value of
n!, n>0.

* Proof.
— Use induction on n.

Algorithm 4.4.2: Computing n Factorial

factorial(n) {

it (n==10)

return 1
return n # factorial{n — 1)

i
§
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Recursive Algorithms

 Example
— A robot can take steps of 1 meter or 2 meters.

— Find the number of ways the robot can walk n
meters.

Algorithm 4.4.6: Robot Walking

Input: n
Output: walki(n)
walki{n) |
ifin==1vn==2)
refurn M
return walki{n — 1) + walk{n — 2)

I
§
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Recursive Algorithms

« Example

— Prove that the "Robot Walking” algorithm is
correct.

 Note
— Fibonacci sequence {f }
- f,=1,f,=1,f =f ,+f ,foralln>3.
— Show that walk(n) =f,, for all n > 1.

* Proof.
— Use induction on n.

— Use mathematical induction to show that
2N f. =1 ,.,—1foralln>1.
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* Analysis of
Algorithms
* Recursive Algorithms
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