

Discrete Mathematics CS204: Spring, 2008

Jong C. Park Computer Science Division, KAIST Today's Topics Analysis of Algorithms Recursive Algorithms

Algorithms

Theorem

- Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$ be a polynomial in *n* of degree k, where each a_i is nonnegative and $a_k > 0$. Then $p(n) = \Theta(n^k)$. Proof. • We first show that $p(n) = O(n^k)$. Let $C_1 = a_k + a_{k-1} + \dots + a_1 + a_0.$ Then for all *n*, $p(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$ $\leq a_k n^k + a_{k-1} n^k + \dots + a_1 n^k + a_0 n^k$ Therefore, $p(n) = O(n^k)$. $= (a_k + a_{k-1} + ... + a_1 + a_0)n^k = C_1 n^k$. • Next, we show that $p(n) = \Omega(n^k)$. For all n, $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \ge a_k n^k = C_2 n^k$ where $C_2 = a_k$. Therefore, $p(n) = \Omega(n^k)$.
 - It follows that $p(n) = \Theta(n^k)$.

Note

- We shall use $\lg n$ to denote $\log_2 n$ (the logarithm of *n* to the base 2).
- Example
 - Find the asymptotic tight bound for 2n + 3 lg
 n.
 - Since $\lg n < n$ for all $n \ge 1$, $2n + 3 \lg n < 2n + 3n = 5n$ for all $n \ge 1$. Thus, $2n + 3 \lg n = O(n)$.
 - Also, $2n + 3 \lg n \ge 2n$ for all $n \ge 1$.
 - Thus, $2n + 3 \lg n = \Omega(n)$.
 - Therefore, $2n + 3 \lg n = \Theta(n)$.

Example

- If a > 1 and b > 1 (to ensure that $\log_b a > 0$), by the change-of-base formula for logarithms, $\log_b n = \log_b a \log_a n$ for all $n \ge 1$.
- Therefore, $\log_b n \le C \log_a n$ for all $n \ge 1$, where $C = \log_b a$. Thus, $\log_b n = O(\log_a n)$.
- Also, $\log_b n \ge C \log_a n$ for all $n \ge 1$; so $\log_b n = \Omega(\log_a n)$.
- Since $\log_b n = O(\log_a n)$ and $\log_b n = \Omega(\log_a n)$, we conclude that $\log_b n = \Theta(\log_a n)$.
- Note
 - For this reason, we sometimes simply write log without specifying the base.

Example

- Find the asymptotic tight bound for $f(n) = 1 + 2 + \dots + n$.
 - First, $f(n) = O(n^2)$, since $1 + 2 + ... + n \le n + n + ... + n = n \cdot n = n^2$ for all $n \ge 1$.
 - Likewise, $f(n) = \Omega(n)$, since $1 + 2 + ... + n \ge 1 + 1 + ... + 1 = n$ for all $n \ge 1$. However, we cannot deduce a Θ -estimate for f(n) with this lower bound, since $n^2 \ne n$. Thus, we need a tighter lower bound.
 - But by throwing away the first half of the terms, we get

 $f(n) \ge \lfloor n/2 \rfloor + \dots + (n - 1) + n$ $\ge \lfloor n/2 \rfloor + \dots + \lfloor n/2 \rfloor + \lfloor n/2 \rfloor$ $= \lfloor (n + 1)/2 \rfloor \lfloor n/2 \rfloor \ge (n/2)(n/2)$ $= n^2/4$ $\ln \ge 1$ Thus $f(n) = O(n^2)$

for all $n \ge 1$. Thus $f(n) = \Omega(n^2)$. • Therefore, $f(n) = \Theta(n^2)$.

Examples

- Find the asymptotic tight bound for $f(n) = 1^k + 2^k + ... + n^k$.
 - $f(n) = \Theta(n^{k+1})$
- Show that $\lg n! = \Theta(n \lg n)$.
 - Proof sketch.

 $- \lg n! = \lg n + \lg (n-1) + \dots + \lg 2 + \lg 1$

 \leq lg n + lg n + ... + lg n + lg n = n lg n for all n \geq 1.

Example

- Show that if $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$.

– Proof.

- Because $f(n) = \Theta(g(n))$, there are constants C_1 and C_2 such that $C_1|g(n)| \le |f(n)| \le C_2|g(n)|$ for all but finitely many positive integers n.
- Because $g(n) = \Theta(h(n))$, there are constants C_3 and C_4 such that $C_3|h(n)| \le |g(n)| \le C_4|h(n)|$ for all but finitely many positive integers *n*. Therefore, $C_1C_3|h(n)| \le C_1|g(n)| \le |f(n)| \le C_2|g(n)| \le C_2C_4|h(n)|$ for all but finitely many positive integers *n*.
- It follows that $f(n) = \Theta(h(n))$.

Definition

- If an algorithm requires t(n) units of time to terminate in the best case for an input of size nand t(n) = O(g(n)), we say that the **best-case time** required by the algorithm is of order at most g(n)or that the best-case time required by the algorithm is O(g(n)).
- If an algorithm requires t(n) units of time to terminate in the worst case for an input of size nand t(n) = O(g(n)), we say that the worst-case time required by the algorithm is of order at most g(n) or that the worst-case time required by the algorithm is O(g(n)).

- If an algorithm requires t(n) units of time to terminate in the average case for an input of size *n* and t(n) = O(g(n)), we say that the **average -case time** required by the algorithm is of order at most g(n) or that the average case time required by the algorithm is O(g(n)).

Analysis of AlgorithmsExample

 Determine, in theta notation, the best-case, worst-case, and average-case times required to execute the following algorithm.

Algorithm 4.3.17: Searching an Unordered Sequence

Input: *s*₁, *s*₂,..., *s*_n, *n*, and *key* (the value to search for)

Output: The index of key, or if key is not found, 0

linear_search(s, n, key) {

```
2. for i = 1 to n
```

if $(key == s_i)$

- return *i* // successful search
- return 0 // unsuccessful search

6.

}

3.

4.

5.

Note

- A recursive function (pseudocode) is a function that invokes itself.
- A recursive algorithm is an algorithm that contains a recursive function.
- Example
 - $-n! = n(n-1)(n-2)\cdots 2 \cdot 1 = n \cdot (n-1)!$

Theorem

- The following algorithm returns the value of $n!, n \ge 0$.

• Proof.

3.

4.

5.

– Use induction on *n*.

Algorithm 4.4.2: Computing *n* Factorial

factorial(n) {

2. if
$$(n == 0)$$

return 1

return n * factorial(n - 1)

13

Example

A robot can take steps of 1 meter or 2 meters.
Find the number of ways the robot can walk *n* meters.

Algorithm 4.4.6: Robot Walking

```
Input: n

Output: walk(n)

walk(n) {

if (n == 1 \lor n == 2)

return n

return walk(n - 1) + walk(n - 2)
```


- Example
 - Prove that the "Robot Walking" algorithm is correct.
- Note
 - Fibonacci sequence $\{f_n\}$
 - $f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2}$ for all $n \ge 3$.
 - Show that $walk(n) = f_{n+1}$ for all $n \ge 1$.
 - Proof.
 - Use induction on n.
 - Use mathematical induction to show that $\Sigma_{k=1}^{n} f_{k} = f_{n+2} 1$ for all $n \ge 1$.

- Analysis of Algorithms
- Recursive Algorithms

