Discrete Mathematics

CS204: Spring, 2008

Jong C. Park
Computer Science Division, KAIST
Today’s Topics
Analysis of Algorithms
Recursive Algorithms
Analysis of Algorithms

- Theorem
 - Let \(p(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0 \) be a polynomial in \(n \) of degree \(k \), where each \(a_i \) is nonnegative and \(a_k > 0 \). Then \(p(n) = \Theta(n^k) \).
 - Proof.
 - We first show that \(p(n) = O(n^k) \). Let \(C_1 = a_k + a_{k-1} + \ldots + a_1 + a_0 \).
 Then for all \(n \),
 \[
 p(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0 \leq a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0 n^k
 \]
 \[
 = (a_k + a_{k-1} + \ldots + a_1 + a_0) n^k = C_1 n^k.
 \]
 Therefore, \(p(n) = O(n^k) \).
 - Next, we show that \(p(n) = \Omega(n^k) \). For all \(n \),
 \[
 p(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0 \geq a_k n^k = C_2 n^k,
 \]
 where \(C_2 = a_k \). Therefore, \(p(n) = \Omega(n^k) \).
 - It follows that \(p(n) = \Theta(n^k) \).
• Note
 – We shall use $\lg n$ to denote $\log_2 n$ (the logarithm of n to the base 2).

• Example
 – Find the asymptotic tight bound for $2n + 3 \lg n$.
 • Since $\lg n < n$ for all $n \geq 1$, $2n + 3 \lg n < 2n + 3n = 5n$ for all $n \geq 1$. Thus, $2n + 3 \lg n = \mathcal{O}(n)$.
 • Also, $2n + 3 \lg n \geq 2n$ for all $n \geq 1$.
 • Thus, $2n + 3 \lg n = \Omega(n)$.
 • Therefore, $2n + 3 \lg n = \Theta(n)$.

Analysis of Algorithms
Analysis of Algorithms

• Example
 – If $a > 1$ and $b > 1$ (to ensure that $\log_b a > 0$), by the change-of-base formula for logarithms, $\log_b n = \log_b a \log_a n$ for all $n \geq 1$.
 – Therefore, $\log_b n \leq C \log_a n$ for all $n \geq 1$, where $C = \log_b a$. Thus, $\log_b n = \Theta(\log_a n)$.
 – Also, $\log_b n \geq C \log_a n$ for all $n \geq 1$; so $\log_b n = \Omega(\log_a n)$.
 – Since $\log_b n = O(\log_a n)$ and $\log_b n = \Omega(\log_a n)$, we conclude that $\log_b n = \Theta(\log_a n)$.

• Note
 – For this reason, we sometimes simply write \log without specifying the base.
• Example
 – Find the asymptotic tight bound for \(f(n) = 1 + 2 + \ldots + n \).
 • First, \(f(n) = O(n^2) \), since \(1 + 2 + \ldots + n \leq n + n + \ldots + n \)
 \(= n \cdot n = n^2 \) for all \(n \geq 1 \).
 • Likewise, \(f(n) = \Omega(n) \), since \(1 + 2 + \ldots + n \geq 1 + 1 + \ldots + 1 = n \) for all \(n \geq 1 \).
 However, we cannot deduce a \(\Theta \)-estimate for \(f(n) \) with this lower bound, since \(n^2 \neq n \). Thus, we need a tighter lower bound.
 • But by throwing away the first half of the terms, we get
 \[
 f(n) \geq \left\lceil \frac{n}{2} \right\rceil + \ldots + (n - 1) + n \\
 \geq \left\lceil \frac{n}{2} \right\rceil + \ldots + \left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor \\
 = \left\lceil (n + 1)/2 \right\rceil \left\lfloor \frac{n}{2} \right\rfloor \geq (n/2)(n/2) \\
 = n^2/4
 \]
 for all \(n \geq 1 \). Thus \(f(n) = \Omega(n^2) \).
 • Therefore, \(f(n) = \Theta(n^2) \).
Analysis of Algorithms

• Examples
 – Find the asymptotic tight bound for \(f(n) = 1^k + 2^k + \ldots + n^k \).
 • \(f(n) = \Theta(n^{k+1}) \)
 – Show that \(\lg n! = \Theta(n \lg n) \).
 • Proof sketch.
 – \(\lg n! = \lg n + \lg (n-1) + \ldots + \lg 2 + \lg 1 \)
 \(\leq \lg n + \lg n + \ldots + \lg n + \lg n = n \lg n \) for all \(n \geq 1 \).
Example

- Show that if \(f(n) = \Theta(g(n)) \) and \(g(n) = \Theta(h(n)) \), then \(f(n) = \Theta(h(n)) \).

- Proof.
 - Because \(f(n) = \Theta(g(n)) \), there are constants \(C_1 \) and \(C_2 \) such that \(C_1|g(n)| \leq |f(n)| \leq C_2|g(n)| \) for all but finitely many positive integers \(n \).
 - Because \(g(n) = \Theta(h(n)) \), there are constants \(C_3 \) and \(C_4 \) such that \(C_3|h(n)| \leq |g(n)| \leq C_4|h(n)| \) for all but finitely many positive integers \(n \). Therefore, \(C_1C_3|h(n)| \leq C_1|g(n)| \leq |f(n)| \leq C_2|g(n)| \leq C_2C_4|h(n)| \) for all but finitely many positive integers \(n \).
 - It follows that \(f(n) = \Theta(h(n)) \).
• Definition
 – If an algorithm requires $t(n)$ units of time to terminate in the best case for an input of size n and $t(n) = O(g(n))$, we say that the best-case time required by the algorithm is of order at most $g(n)$ or that the best-case time required by the algorithm is $O(g(n))$.
 – If an algorithm requires $t(n)$ units of time to terminate in the worst case for an input of size n and $t(n) = O(g(n))$, we say that the worst-case time required by the algorithm is of order at most $g(n)$ or that the worst-case time required by the algorithm is $O(g(n))$.
If an algorithm requires $t(n)$ units of time to terminate in the average case for an input of size n and $t(n) = O(g(n))$, we say that the average-case time required by the algorithm is of order at most $g(n)$ or that the average-case time required by the algorithm is $O(g(n))$.

Analysis of Algorithms
Example

- Determine, in theta notation, the best-case, worst-case, and average-case times required to execute the following algorithm.

Algorithm 4.3.17: Searching an Unordered Sequence

Input: s_1, s_2, \ldots, s_n, n, and key (the value to search for)

Output: The index of key, or if key is not found, 0

1. $linear_search(s, n, key) \{
2. for i = 1 to n
3. if (key == s_i)
4. return i \ // successful search
5. return 0 \ // unsuccessful search
6. }$
• **Note**
 – A *recursive function* (pseudocode) is a function that invokes itself.
 – A *recursive algorithm* is an algorithm that contains a recursive function.

• **Example**
 – $n! = n(n - 1)(n - 2)\cdots 2 \cdot 1 = n \cdot (n - 1)!$
Recursive Algorithms

• Theorem
 – The following algorithm returns the value of $n!$, $n \geq 0$.
• Proof.
 – Use induction on n.

Algorithm 4.4.2: Computing n Factorial

1. $factorial(n) \{
2. \quad$ if $(n == 0)$
3. \quad return 1
4. \quad return $n \ast factorial(n - 1)$
5. \}

Recursive Algorithms

• Example
 – A robot can take steps of 1 meter or 2 meters.
 – Find the number of ways the robot can walk n meters.

```
Algorithm 4.4.6: Robot Walking

Input:   $n$
Output:  $walk(n)$

$walk(n)$ {
  if ($n == 1 \vee n == 2$)
    return $n$
  return $walk(n - 1) + walk(n - 2)$
}
```
Recursive Algorithms

• Example
 – Prove that the “Robot Walking” algorithm is correct.

• Note
 – Fibonacci sequence \(\{f_n\} \)
 • \(f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2} \) for all \(n \geq 3 \).
 – Show that \(walk(n) = f_{n+1} \) for all \(n \geq 1 \).
 • Proof.
 – Use induction on \(n \).
 – Use mathematical induction to show that
 \[\sum_{k=1}^{n} f_k = f_{n+2} - 1 \] for all \(n \geq 1 \).
Summary

- Analysis of Algorithms
- Recursive Algorithms