- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics

Divisors
Representations of Integers and Integer Algorithms

- © © ©

Introduction to Number Theory

Introduction to Number Theory

Divisors

Representations of Integers and Integer Algorithms

The Euclidean Algorithm

The RSA Public-Key Cryptosystem

Divisors

- Definition
- Let n and d be integers, $d \neq 0$. We say that d divides n if there exists an integer q satisfying n $=d q$. We call q the quotient and d a divisor or factor of n. If d divides n, we write $d \mid n$. If d does not divide n, we write $d_{1} n$.
- Example
- Since 21 = 3•7, 3 divides 21 and we write 3 | 21. The quotient is 7 . We call 3 a divisor or factor or 21.
- Show that if n and d are positive integers and $d \mid$ n, then $d \leq n$.

Divisors

- Note
- Whether an integer $d>0$ divides an integer n or not, we obtain a unique quotient q and remainder r as given by the QuotientRemainder Theorem:
- There exist unique integers q (quotient) and r (remainder) satisfying $n=d q+r, 0 \leq r<d$.
- The remainder r equals zero if and only if d divides n.

Divisors

- Theorem
- Let m, n, and d be integers.
- (a) If $d \mid m$ and $d \mid n$, then $d \mid(m+n)$.
- (b) If $d \mid m$ and $d \mid n$, then $d \mid(m-n)$.
- (c) If $d \mid m$, then $d \mid m n$.
- Proof.
- Exercise

Divisors

- Definition
- An integer greater than 1 whose only positive divisors are itself and 1 is called prime. An integer greater than 1 that is not prime is called composite.
- Examples
- Show that the integer 23 is prime.
- 1, 23
- Show that the integer 34 is composite.
- 1, 17, 34

Divisors

- Note
- To determine if a positive integer n is composite, it suffices to test whether any of the integers 2 , $3, \ldots, n-1$ divides n.
- If some integer in this list divides n, then n is composite.
- If no integer in this list divides n, then n is prime.
- Examples
- Show that 43 is prime.
- Show that 451 is composite.
- 11

Divisors

- Theorem
- A positive integer n greater than 1 is composite if and only if n has a divisor d satisfying $2 \leq d \leq \sqrt{ } n$.
- Proof.
- We must prove the following two claims.
- If n is composite, then n has a divisor d satisfying $2 \leq d$ $\leq \sqrt{ } n$.
- If n has a divisor d satisfying $2 \leq d \leq \sqrt{ } n$, then n is composite.

Divisors

```
    Input: n
Output: d
is_prime(n) {
    for }d=2\mathrm{ to \/v
        if ( }n\operatorname{mod}d==0
        return d
    return 0
\
```

Algorithm 5.1.8: Testing Whether an Integer is Prime

Divisors

- Examples
- Determine whether 43 is prime, using the earlier algorithm.
- The algorithm check whether any of $2,3,4,5,6=$ $\lfloor\sqrt{ } 43\rfloor$ divides 43.
- None of these numbers divides 43 , so the condition $n \bmod d==0$ in the algorithm is always false.
- Therefore, the algorithm returns 0 to indicate that 43 is prime.
- Determine whether 451 is prime.

Divisors

- Example
- If the input the earlier algorithm is $n=1274$, the algorithm returns the prime 2 because 2 divides 1274 , specifically $1274=2 \cdot 637$.
- If we input $n=637$, we get the prime 7 , specifically $637=7.91$.
- With $n=91$, we get the prime 7 again, specifically $91=7 \cdot 13$.
- If we now input $n=13$, the algorithm returns 0 because 13 is prime.
- Combining the previous equations, we get 1274 $=2 \cdot 7 \cdot 7 \cdot 13$.

Divisors

- Theorem
- Fundamental Theorem of Arithmetic
- Any integer greater than 1 can be written as a product of primes. Moreover, if the primes are written in nondecreasing order, the factorization is unique. In symbols, if

$$
n=p_{1} p_{2} \cdots p_{i,}
$$

where the p_{k} are primes and $p_{1} \leq p_{2} \leq \cdots \leq p_{i}$, and

$$
n=p_{1}^{\prime} p_{2}^{\prime} \cdots p_{j}^{\prime}
$$

where the p_{k}^{\prime} are primes and $p_{1}^{\prime} \leq p_{2}^{\prime} \leq \cdots \leq p_{j}^{\prime}$, then $i=j$ and

$$
p_{k}=p_{k}^{\prime} \text { for all } k=1, \ldots, i .
$$

Divisors

- Theorem
- The number of primes is infinite.
- Proof.
- It suffices to show that if p is a prime, there is a prime larger than p.
- To this end, we let $p_{1}, p_{2}, \ldots, p_{n}$ denote all of the distinct primes less than or equal to p.
- Consider the integer $m=p_{1} p_{2} \cdots p_{n}+1$.
- (Complete the proof.)

Divisors

- Definition
- Let m and n be integers with not both m and n zero. A common divisor of m and n is an integer than divides both m and n. The greatest common divisor, written $\operatorname{gcd}(m, n)$, is the largest common divisor of m and n.
- Example
- What is the greatest common divisor of 30 and 105?
- We can find the answer by enumerating the positive divisors of each number.
- We can also find the answer by inspecting the prime factorization of each number.

Divisors

- Theorem
- Let m and n be integers, $m>1, n>1$, with prime factorizations

$$
m=p^{a_{1}}{ }_{1} p^{a_{2}}{ }_{2} \cdots p^{a_{n}}{ }_{n}
$$

and

$$
n=p^{b_{1}}{ }_{1} p^{b_{2}}{ }_{2} \cdots p^{b_{n}}{ }_{n} .
$$

(If the prime p_{i} is not a factor of m, we let $a_{i}=0$.
Similarly, if the prime p_{i} is not a factor of n, we let $b_{i}=$ 0.$)$

Then $\operatorname{gcd}(m, n)=p^{\min \left(a_{1}, b_{1}\right)}{ }_{1} p^{\min \left(a_{2}, b_{2}\right)}{ }_{2} \ldots p^{\min \left(a_{n}, b_{n}\right)}{ }_{n}$.

- Example
- What is the greatest common divisor of 82320 and 950796?
- $\operatorname{gcd}(82320,950796)=2^{\min (4,2)} \cdot 3^{\min (1,2)} \cdot 5^{\min (1,0)} \cdot 7^{\min (3,4)} \cdot 11^{\min (0,1)}$

$$
=2^{2} \cdot 3^{1} \cdot 5^{0} \cdot 7^{3} \cdot 11^{0}=4116 .
$$

Divisors

- Definition
- Let m and n be positive integers. A common multiple of m and n is an integer that is divisible by both m and n. The least common multiple, written $\operatorname{Icm}(m, n)$, is the smallest positive common multiple of m and n.
- Example
- The least common multiple of 30 and 105
- Use the "list all divisors" method.
- Use the prime factorization method.

Divisors

- Theorem
- Let m and n be integers, $m>1, n>1$, with prime factorizations

$$
m=p^{a_{1}}{ }_{1} p^{a_{2}}{ }_{2} \cdots p^{a_{n}}{ }_{n}
$$

and

$$
n=p^{b_{1}}{ }_{1} p^{b_{2}}{ }_{2} \cdots p^{b_{n}}{ }_{n} .
$$

(If the prime p_{i} is not a factor of m, we let $a_{i}=0$. Similarly, if the prime p_{i} is not a factor of n, we let $b_{i}=$ 0.$)$

Then $\operatorname{Icm}(m, n)=p^{\max \left(a_{1}, b_{1}\right)}{ }_{1} p^{\max \left(a_{2}, b_{2}\right)}{ }_{2} \ldots p^{\max \left(a_{n}, b_{n}\right)}{ }_{n}$.

- Example
- What is the least common multiple of 82320 and 950796?

Divisors

- Theorem
- For any positive integers m and n, $\operatorname{gcd}(m, n) \cdot \operatorname{lcm}(m, n)=m n$.
- Proof.
- Exercise
- Establish the claim first with $m=1$, and separately with $n=1$, and then assume $m>1$ and $n>1$.
- Use the fact that $\min (x, y)+\max (x, y)=x+y$.

Representations of Integers and Integer Algorithms

- Terminology
- bit
- the binary number system
- the hexadecimal number system
- the octal number system
- the base of the number system
- Example
- Computer Representation of Integers
-What is the number of bits required to represent n ?
$-\lfloor 1+\lg n\rfloor$

Representations of Integers and Integer Algorithms

- Example
- Binary to Decimal
- 101101_{2}
- 45_{10}.

Representations of Integers and Integer Algorithms

```
Algorithm 5.2.3: Converting an Integer from Base b to
Decimal
base_b_to_dec(c, n, b)
    dec_val = 0
    power = 1
    for i=0 to n {
        dec_val = dec_val + cci* *ower
        power = power * b
    }
    return dec_val
}
```


Representations of Integers and Integer Algorithms

- Examples
- Hexadecimal to Decimal
- $\mathrm{B}_{4} \mathrm{~F}_{16}$
- 2895_{10}.
- Decimal to Binary
- 130_{10}
- 10000010_{2}.

Representations of Integers and Integer Algorithms

Algorithm 5.2.7: Converting a Decimal Integer into Base b
Input: m, b
Output: c, n
dec_to_base_ $b(m, b, c, n)$
$n=-1$
while $(m>0)$ (
$n=n+1$
$c_{n}=m \bmod b$
$m=\lfloor m / b\rfloor$
\}
)

Representations of Integers and Integer Algorithms

- Examples
- Convert the decimal number $m=11$ to binary.
- Decimal to Hexadecimal
- 20385_{10}
- 4FA1 ${ }_{16}$.
- Binary Addition
- Add the binary numbers 10011011 and 1011011.
- 11110110

Representations of Integers and Integer Algorithms

Algorithm 5.2.12: Adding Binary Numbers
Input: b, b^{\prime}, n
Qutput: s
binary_addition $\left(b, b^{*}, n, s\right)$

$$
\begin{aligned}
& \text { carry }=0 \\
& \text { for } i=0 \text { to } n! \\
& \quad s_{i}=\left(b_{i}+b_{i}^{\prime}+\text { carry }\right) \bmod 2 \\
& \quad \text { carry }=\left\lfloor\left(b_{i}+b_{i}^{\prime}+\text { carry }\right) / 2\right\rfloor \\
& \} \\
& s_{n+1}=\text { carry }
\end{aligned}
$$

Representations of Integers and Integer Algorithms

- Example
- Hexadecimal Addition
- Add the hexadecimal numbers 84F and 42EA.

Representations of Integers and Integer Algorithms

- Example
- Compute a^{29} with repeated squaring.
- $a^{29}=a^{1} \cdot a^{4} \cdot a^{8} \cdot a^{16}$.
- Initially, x is set to a, and n is set to the value of the exponent, 29.
- We then compute n mod 2. Since this value is 1 , we know that $1=2^{0}$ is included in the binary expansion of 29. Therefore a^{1} is included in the product. We track the partial product in Result; so Result is set to a.
- We then compute the quotient when 29 is divided by 2. The quotient 14 becomes the new value of n.
- We then repeat this process (until n becomes 0).

Representations of Integers and Integer Algorithms

```
    Input: a,n
Output: an
exp_via_repeated_squaring(a,n) {
    result = 1
    x=a
    while ( }n>0)
        if ( }n\operatorname{mod}2==1
            result = result *x
        x = x*x
        n=\n/2\rfloor
    }
    return result
}
```

Algorithm 5.2.16: Exponentiation By Repeated Squaring

Representations of Integers and Integer Algorithms

- Theorem
- If a, b, and z are positive integers, $a b \bmod z=[(a \bmod z)(b \bmod z)] \bmod z$.
- Proof.
- Exercise
- Example
- Show how to compute $572^{29} \bmod 713$.
- To compute a^{29}, we successively computed $a, a^{5}=$ $a \cdot a^{4}, a^{13}=a^{5} \cdot a^{8}, a^{29}=a^{13} \cdot a^{16}$.
- To compute $a^{29} \bmod z$, we successively compute $a \bmod z, a^{5} \bmod z, a^{13} \bmod z, a^{29} \bmod z$.

Representations of Integers and Integer Algorithms

Algorithm 5.2.19: Exponentiation $\operatorname{Mod} z$ By Repeated Squaring

Input: a, n, z
Output: $a^{n} \bmod n$

```
exp_mod_z_via_repeated_squaring(a,n,z) {
    result = 1
    x =a modz
    while ( }n>0\mathrm{ ) {
        if ( }n\operatorname{mod}2==1
            result =(result *x) mod z
        x=(x*x) mod z
        n=\n/2\rfloor
    }
    return result
}
```


Summary

- Divisors
- Representations of Integers and Integer Algorithms

