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Divisors

« Definition
— Let n and d be integers, d # 0. We say that d
divides n If there exists an integer g satisfying n
= dqg. We call g the quotient and d a divisor or

factor of n. If d divides n, we write d | n. If d does
not divide n, we write d /| n.

« Example

— Since 21 = 3.7, 3 divides 21 and we write 3 | 21.
The quotient is 7. We call 3 a divisor or factor or
21.

— Show that if n and d are positive integers and d |
n, thend <n.
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e Note

— Whether an integer d > O divides an integer n
or not, we obtain a unique guotient g and
remainder r as given by the Quotient-
Remainder Theorem:

* There exist unique integers g (quotient) and r
(remainder) satisfyingn=dq +r,0<r<d.

— The remainder r equals zero if and only if d
divides n.
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* Theorem

— Proof.
 Exercise

Divisors

— Let m, n, and d be integers.
e (@)lfd|mandd|n,thend|(m + n).
* (b)lIfd| mandd | n, thend | (m—n).
* (¢)Ifd| m, thend | mn.
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* Definition
— An Integer greater than 1 whose only positive
divisors are itself and 1 is called prime. An

Integer greater than 1 that is not prime is
called composite.

 Examples

— Show that the integer 23 is prime.
1,23

— Show that the integer 34 is composite.
- 1,17, 34
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* Note

— To determine if a positive integer n is composite,
It suffices to test whether any of the integers 2,
3, ..., n—1 divides n.

— If some integer in this list divides n, then n is
composite.

— If no integer In this list divides n, then n is prime.
« Examples

— Show that 43 Is prime.

— Show that 451 is composite.
2Ll
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* Theorem

Divisors

— A positive integer n greater than 1 is
composite if and only if n has a divisor d
satisfying 2 < d < Vn.

— Proof.

* We must prove the following two claims.
— If n iIs composite, then n has a divisor d satisfying 2 <d

<4n.

— If n has a divisor d satisfying 2 < d < n, then n is

composite.
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Divisors

Algorithm 5.1.8: Testing Whether an Integer is Prime

Input: n
Output: o

is_prime(n) |

ford =21tw|. /n]
if (nmodd == 0)
refurn o
return ()
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« Examples

Divisors

— Determine whether 43 is prime, using the
earlier algorithm.

* The algorithm check whether any of 2, 3, 4,5, 6 =
| V43 divides 43.

 None of these numbers divides 43, so the
condition n mod d == 0 in the algorithm Is always

false.

* Therefore, the algorithm returns O to indicate that

43 is prime.

— Determine whether 451 Is prime.

11
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« Example

— If the input the earlier algorithm is n = 1274, the
algorithm returns the prime 2 because 2 divides
1274, specifically 1274 = 2-637.

— If we input n = 637, we get the prime 7,
specifically 637 = 7-91.

— With n = 91, we get the prime 7 again,
specifically 91 = 7-13.

— If we now input n = 13, the algorithm returns O
because 13 is prime.

— Combining the previous equations, we get 1274
=2-7-7-13.

12
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* Theorem

— Fundamental Theorem of Arithmetic

* Any integer greater than 1 can be written as a
product of primes. Moreover, If the primes are
written in nondecreasing order, the factorization is
unigue. In symbols, if

N = PPz Pi
where the p, are primes and p; < p, < --- <p;, and
= p’lp’z...p’j,
where the p’, are primes and p’; <p’, <+ <pj,
theni=jand

p.=pforallk=1, .., 1

13
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Divisors
* Theorem
— The number of primes is infinite.
* Proof.

— It suffices to show that if p is a prime, there is a prime
larger than p.

— To this end, we let p;, ps, ..., P, denote all of the distinct
primes less than or equal to p.

— Consider the integer m = p,p,---p, + 1.
— (Complete the proof.)

14
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* Definition
— Let m and n be integers with not both m and n
zero. A common divisor of m and n is an integer
than divides both m and n. The greatest common

divisor, written gcd(m,n), Is the largest common
divisor of m and n.

« Example

— What is the greatest common divisor of 30 and
1057
« We can find the answer by enumerating the positive
divisors of each number.

« We can also find the answer by inspecting the prime
factorization of each number.

15
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 Theorem
— Let m and n be integers, m > 1, n > 1, with prime
factorizations ; )
a
m = p~yp™-p™y
and s 5
N=pHp 2P,
gf the prime p; is not a factor of m, we let a, = 0.
imilarly, if the prime p; is not a factor of n, we let b, =

0.) _ _ .
Then gcd(m,n) i pmln(al,bl)lpmln(az,bz)z...pmm(an,bn)n.
« Example
— What is the greatest common divisor of 82320 and
9507967

 gcd(82320,950796) = 2min(4,2)_3min(1,2)_5min(l,0)_7min(3,4)_11min(o,1)
= 22.31.50.73.119 = 4116.
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o Definition

Divisors

— Let m and n be positive integers. A common
multiple of m and n is an integer that is
divisible by both m and n. The least common
multiple, written Icm(m,n), is the smallest
positive common multiple of m and n.

 Example

— The least common multiple of 30 and 105
» Use the “list all divisors” method.
« Use the prime factorization method.

17
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Divisors

 Theorem
— Let m and n be integers, m > 1, n > 1, with prime
factorizations
m = p 4 p*2,-p,
and . :
N=php 2Py
(If the prime p; Is not a factor of m, we let a, = 0.
Similarly, if the prime p; Is not a factor of n, we let b, =

0.)
Then Icm(m,n) 2 pmax(al,bl)lpmax(az,bz)z...pmax(an,bn)n.
« Example
— What is the least common multiple of 82320 and
9507967

18
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* Theorem

— For any positive integers m and n,
gcd(m,n)-lcm(m,n) = mn.
— Proof.

 Exercise

 Establish the claim first with m = 1, and separately
with n =1, and then assume m>1 and n > 1.

« Use the fact that min(x,y) + max(x,y) = X +.

19
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Representations of Integers and
Integer Algorithms

* Terminology
— bit
— the binary number system
— the hexadecimal number system
— the octal number system
— the base of the number system

« Example

— Computer Representation of Integers

* What is the number of bits required to represent n?
~[1+Ign]
€ v

20
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« Example

— Binary to Decimal
- 101101,

+ 45,

~

21
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Integer Algorithms

Algorithm 5.2.3: Converting an Integer from Base b to
Decimal

hase_b_to_decic,n, b
dec_val =)
power = 1

fori=0ton{
dec_val = dec_val + c; % power
POWEF = POwWeEr = b

return dec_val
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Representations of Integers and
Integer Algorithms

« Examples

— Hexadecimal to Decimal
« B4F

. 2895,

— Decimal to Binary
« 130,

- 10000010,

\
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Integer Algorithms

Algorithm 5.2.7: Converting a Decimal Integer into Base b

Input: m, b
Chtput: ¢, n

dec_to_base_bim, b,c,n)
n=—1
while (m = 0} |
n=n-+1
Cy = mmod b
m=|m/b|
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Integer Algorithms

« Examples
— Convert the decimal number m = 11 to binary.

— Decimal to Hexadecimal
. 20385,

* 4FAL,,.
— Binary Addition
« Add the binary numbers 10011011 and 1011011.

* 11110110
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Algorithm 5.2.12: Adding Binary Numbers

Input: b, b',n
Output: s

binary_addition{b, b", n, 5)
carry =10
fori=0ton {
si = (bi + b; + carry) mod 2
carry = | {bi + b; + carry) 2]
I
Sa+l = CAFTY

t
§
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« Example

— Hexadecimal Addition
* Add the hexadecimal nhumbers 84F and 42EA.
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Representations of Integers and

Integer Algorithms

« Example
— Compute a?® with repeated squaring.

a29 s al_a4_a8_al6.
Initially, x Is set to a, and n is set to the value of the
exponent, 29.

We then compute n mod 2. Since this value is 1, we
know that 1 = 29 is included in the binary expansion of
29. Therefore al is included in the product. We track
the partial product in Result; so Result is set to a.

We then compute the quotient when 29 is divided by 2.
The quotient 14 becomes the new value of n.

We then repeat this process (until n becomes 0).

28
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Representations of Integers and

Integer Algorithms

Algorithm 5.2.16: Exponentiation By Repeated Squaring

Input: a,n
Output: a”

exp_via_repeated_squaringla, n) {

result = 1
X =
while in = 0) {

ifinmod?2 ==1)

result = result + x

X =X %X

n=|n/2|
}
return result

T
§
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 Theorem
— If &, b, and z are positive integers,
ab mod z = [(a mod z)(b mod z)] mod z.

— Proof.
 Exercise

« Example

— Show how to compute 572%° mod 713.
* To comEute a29, we successively computed a, a°® =
a_a4, al = a5,a8’ a29 = a13_a16.
« To compute a®® mod z, we successively compute
a mod z, a®> mod z, a'® mod z, a®® mod z.
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Algorithm 5.2.19: Exponentiation Mod z By Repeated
Squaring

Input: a,n,z
Output: a™ mod n

exp_mod_z_via_repeated_squaring(a,n, z) |

result = 1
x=amod =z
while (n = 0} {

if i nmod2 ==1)

result = (result = x) mod =z

X =(x*x)modz

n=|n/2|
h

return result
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