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• Definition

– Let n and d be integers, d  0. We say that d
divides n if there exists an integer q satisfying n
= dq. We call q the quotient and d a divisor or 
factor of n. If d divides n, we write d | n. If d does 
not divide n, we write d | n. 

• Example

– Since 21 = 3·7, 3 divides 21 and we write 3 | 21. 
The quotient is 7. We call 3 a divisor or factor or 
21. 

– Show that if n and d are positive integers and d | 
n, then d  n. 

/
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• Note

– Whether an integer d > 0 divides an integer n

or not, we obtain a unique quotient q and 

remainder r as given by the Quotient-

Remainder Theorem: 

• There exist unique integers q (quotient) and r

(remainder) satisfying n = dq + r, 0  r < d. 

– The remainder r equals zero if and only if d

divides n. 
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• Theorem

– Let m, n, and d be integers.

• (a) If d | m and d | n, then d | (m + n).

• (b) If d | m and d | n, then d | (m – n).

• (c) If d | m, then d | mn. 

– Proof.

• Exercise
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• Definition

– An integer greater than 1 whose only positive 
divisors are itself and 1 is called prime. An 
integer greater than 1 that is not prime is 
called composite.

• Examples

– Show that the integer 23 is prime.
• 1, 23

– Show that the integer 34 is composite.
• 1, 17, 34
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• Note

– To determine if a positive integer n is composite, 
it suffices to test whether any of the integers 2, 
3, ..., n – 1 divides n. 

– If some integer in this list divides n, then n is 
composite.

– If no integer in this list divides n, then n is prime. 

• Examples

– Show that 43 is prime.

– Show that 451 is composite.
• 11
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• Theorem

– A positive integer n greater than 1 is 

composite if and only if n has a divisor d

satisfying 2  d  n.

– Proof.

• We must prove the following two claims.

– If n is composite, then n has a divisor d satisfying 2  d

 n.

– If n has a divisor d satisfying 2  d  n, then n is 

composite.
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• Examples

– Determine whether 43 is prime, using the 

earlier algorithm.

• The algorithm check whether any of 2, 3, 4, 5, 6 = 

43 divides 43.

• None of these numbers divides 43, so the 

condition n mod d == 0 in the algorithm is always 

false. 

• Therefore, the algorithm returns 0 to indicate that 

43 is prime.

– Determine whether 451 is prime.
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• Example

– If the input the earlier algorithm is n = 1274, the 
algorithm returns the prime 2 because 2 divides 
1274, specifically 1274 = 2·637.

– If we input n = 637, we get the prime 7, 
specifically 637 = 7·91. 

– With n = 91, we get the prime 7 again, 
specifically 91 = 7·13. 

– If we now input n = 13, the algorithm returns 0 
because 13 is prime.

– Combining the previous equations, we get 1274 
= 2·7·7·13.
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• Theorem

– Fundamental Theorem of Arithmetic
• Any integer greater than 1 can be written as a 

product of primes. Moreover, if the primes are 
written in nondecreasing order, the factorization is 
unique. In symbols, if 

n = p1p2···pi, 

where the pk are primes and p1  p2  ···  pi, and 

n = p’1p’2···p’j, 

where the p’k are primes and p’1  p’2  ···  p’j, 
then i = j and 

pk = p’k for all k = 1, ..., i.
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• Theorem

– The number of primes is infinite.

• Proof.

– It suffices to show that if p is a prime, there is a prime 

larger than p.

– To this end, we let p1, p2, ..., pn denote all of the distinct 

primes less than or equal to p. 

– Consider the integer m = p1p2···pn + 1. 

– (Complete the proof.)
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• Definition
– Let m and n be integers with not both m and n

zero. A common divisor of  m and n is an integer 
than divides both m and n. The greatest common 
divisor, written gcd(m,n), is the largest common 
divisor of m and n.

• Example
– What is the greatest common divisor of 30 and 

105?
• We can find the answer by enumerating the positive 

divisors of each number.

• We can also find the answer by inspecting the prime 
factorization of each number.
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• Theorem
– Let m and n be integers, m > 1, n > 1, with prime 

factorizations 
m = p

a1
1p

a2
2···p

an
n

and 
n = p

b1
1p

b2
2···p

bn
n. 

(If the prime pi is not a factor of m, we let ai = 0. 
Similarly, if the prime pi is not a factor of n, we let bi = 
0.) 
Then gcd(m,n) = p

min(a1,b1)
1p

min(a2,b2)
2···p

min(an,bn)
n. 

• Example
– What is the greatest common divisor of 82320 and 

950796?
• gcd(82320,950796) = 2

min(4,2)
·3

min(1,2)
·5

min(1,0)
·7

min(3,4)
·11

min(0,1)

= 22·31·50·73·110 = 4116.
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• Definition

– Let m and n be positive integers. A common 

multiple of m and n is an integer that is 

divisible by both m and n. The least common 

multiple, written lcm(m,n), is the smallest 

positive common multiple of m and n. 

• Example

– The least common multiple of 30 and 105

• Use the “list all divisors” method.

• Use the prime factorization method.
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• Theorem
– Let m and n be integers, m > 1, n > 1, with prime 

factorizations 

m = p
a1

1p
a2

2···p
an

n

and 

n = p
b1

1p
b2

2···p
bn

n. 

(If the prime pi is not a factor of m, we let ai = 0. 
Similarly, if the prime pi is not a factor of n, we let bi = 
0.) 

Then lcm(m,n) = p
max(a1,b1)

1p
max(a2,b2)

2···p
max(an,bn)

n. 

• Example
– What is the least common multiple of 82320 and 

950796?
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• Theorem

– For any positive integers m and n, 

gcd(m,n)·lcm(m,n) = mn.

– Proof.

• Exercise

• Establish the claim first with m = 1, and separately 

with n = 1, and then assume m > 1 and n > 1. 

• Use the fact that min(x,y) + max(x,y) = x + y. 



20

• Terminology

– bit

– the binary number system

– the hexadecimal number system

– the octal number system

– the base of the number system

• Example

– Computer Representation of Integers
• What is the number of bits required to represent n?

– 1 + lg n
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• Example

– Binary to Decimal

• 1011012

• 4510.
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• Examples

– Hexadecimal to Decimal

• B4F16

• 289510.

– Decimal to Binary

• 13010

• 100000102.
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• Examples

– Convert the decimal number m = 11 to binary.

– Decimal to Hexadecimal

• 2038510

• 4FA116.

– Binary Addition

• Add the binary numbers 10011011 and 1011011.

• 11110110
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• Example

– Hexadecimal Addition

• Add the hexadecimal numbers 84F and 42EA.
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• Example

– Compute a29 with repeated squaring.

• a29 = a1·a4·a8·a16.

• Initially, x is set to a, and n is set to the value of the 

exponent, 29. 

• We then compute n mod 2. Since this value is 1, we 

know that 1 = 20 is included in the binary expansion of 

29. Therefore a1 is included in the product. We track 

the partial product in Result; so Result is set to a.

• We then compute the quotient when 29 is divided by 2. 

The quotient 14 becomes the new value of n.

• We then repeat this process (until n becomes 0).
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• Theorem
– If a, b, and z are positive integers, 

ab mod z = [(a mod z)(b mod z)] mod z. 

– Proof.
• Exercise

• Example
– Show how to compute 57229 mod 713.

• To compute a29, we successively computed a, a5 = 
a·a4, a13 = a5·a8, a29 = a13·a16.

• To compute a29 mod z, we successively compute 

a mod z, a5 mod z, a13 mod z, a29 mod z. 
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