- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics

The Euclidean Algorithm
The RSA Public-Key Cryptosystem

- © © ©

Introduction to Number Theory

The Euclidean Algorithm

- Note
- If $r=a \bmod b$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
- Example
- Compute gcd(105,30).
- Since $105 \bmod 30=15, \operatorname{gcd}(105,30)=\operatorname{gcd}(30,15)$.
- Since $30 \bmod 15=0, \operatorname{gcd}(30,15)=\operatorname{gcd}(15,0)$.
- By inspection, $\operatorname{gcd}(15,0)=15$.
- Therefore, $\operatorname{gcd}(105,30)=\operatorname{gcd}(30,15)$

$$
\begin{aligned}
& =\operatorname{gcd}(15,0) \\
& =15 .
\end{aligned}
$$

The Euclidean Algorithm

- Theorem
- If a is a nonnegative integer, b is a positive integer, and $r=a \bmod b$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
- Proof.
- By the quotient-remainder theorem, there exist q and r satisfying $a=b q+r, 0 \leq r<b$. We show that the set of common divisors of a and b is equal to the set of common divisors of b and r, thus proving the theorem.
- Let c be a common divisor of a and b. Thus, $c \mid b q$.
- Since $c \mid a$ and $c|b q, c| a-b q(=r)$.
- Thus c is a common divisor of b and r.
- Conversely, if c is a common divisor of b and r, then $c \mid b q$ and $c \mid b q+r(=a)$ and c is a common divisor of a and b.
- Thus the set of common divisors of a and b is equal to the set of common divisors of b and r. Therefore, $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}(b, r)$.

The Euclidean Algorithm

```
Algorithm 5.3.3: Euclidean Algorithm
    Input: a and b (nonnegative integers, not both zero)
    Output: Greatest common divisor of }a\mathrm{ and }
    1. gcd(a,b) {
    2. // make a largest
    3. if (a<b)
    4. }\operatorname{swap}(a,b
    5. while (b }==0) 
    6. }r=a\operatorname{mod}
    7. }a=
    8. }b=
    9. }
    10. return a
    11. }
```


The Euclidean Algorithm

- Example
- Find gcd(504, 396).

The Euclidean Algorithm

- Theorem
- Suppose that the pair $a, b, a>b$, requires $n \geq 1$ modulus operations when input to the
Euclidean algorithm. Then $a \geq f_{n+2}$ and $b \geq f_{n+1}$, where $\left\{f_{n}\right\}$ denotes the Fibonacci sequence.
- Proof.
- The proof is by induction on n.

The Euclidean Algorithm

- Theorem
- If integers in the range 0 to $m, m \geq 8$, not both zero, are input to the Euclidean algorithm, then at most $\log _{3 / 2} 2 \mathrm{~m} / 3$ modulus operations are required.
- Note
- This means that the algorithm is quite efficient.

The Euclidean Algorithm

- Note
- We use the following special result to compute inverses modulo an integer.
- Such inverses are used in the RSA cryptosystem.
- Theorem
- If a and b are nonnegative integers, not both zero, there exist integers s and t such that $\operatorname{gcd}(a, b)=s a+t b$.
- Proof.
- page 211.

The Euclidean Algorithm

- Example
- Compute s and t from $\operatorname{gcd}(273,110)$.
- We begin with $a=273$ and $b=110$. $53=273-110 \cdot 2$
$-r=273 \bmod 110=53$.
- We then compute $a=110$ and $b=53$.
$-r=110 \bmod 53=4$.

$$
4=110-53 \cdot 2
$$

- We then compute $a=53$ and $b=4$.
$-r=53 \bmod 4=1$.

$$
1=53-4 \cdot 13
$$

- We then compute $a=4$ and $b=1$.
$-r=4 \bmod 1=0$.
- To find s and t, we work back from $r \neq 0$.

$$
-1=53-4 \cdot 13=53-(110-53 \cdot 2) \cdot 13=27 \cdot 53-13 \cdot 110 .
$$

$-1=27 \cdot 53-13 \cdot 110=27 \cdot(273-110 \cdot 2)-13 \cdot 110=27 \cdot 273-$ 67.110.

- Taking $s=27$ and $t=-67$, we obtain $\operatorname{gcd}(273,110)=1=$ $s \cdot 273+t \cdot 110$.

Computing an Inverse Modulo an Integer

- Note
- Suppose that we have two integers $n>0$ and $\phi>1$ such that $\operatorname{gcd}(n, \phi)=1$.
- We show how to efficiently compute an integer $s, 0$ $<s<\phi$ such that $n s \bmod \phi=1$.
- We call s the inverse of n mod ϕ. Efficiently computing this inverse is required by the RSA cryptosystem.
- Since $\operatorname{gcd}(n, \phi)=1$, we use the Euclidean algorithm to find numbers s^{\prime} and ' t^{\prime} such that $s^{\prime} n+t^{\prime} \phi=1$.
- Then $n s^{\prime}=-t^{\prime} \phi+1$, and, since $\phi>1,1$ is the remainder. Thus,

$$
n s^{\prime} \bmod \phi=1 .
$$

Note that s' is almost the desired value; the problem is that s^{\prime} may not satisfy $0<s^{\prime}<\phi$.

Computing an Inverse Modulo an Integer

- Note (continued)
- However, we can convert s' to the proper value by setting

$$
s=s^{\prime} \bmod \phi .
$$

Now $0 \leq s<\phi$.

- In fact $s \neq 0$, since, if $s=0$, then $\phi \mid s^{\prime}$, which contradicts the fact that ns $\bmod \phi=1$.
- Since $s=s^{\prime}$ mod ϕ, there exists q such that

$$
s^{\prime}=q \phi+s .
$$

- Combining the previous equations,

$$
\begin{aligned}
n s & =n s^{\prime}-\phi n q \\
& =-t^{\prime} \phi+1-\phi n q \\
& =\phi\left(-t^{\prime}-n q\right)+1 .
\end{aligned}
$$

- Therefore $n s \bmod \phi=1$.

Computing an Inverse Modulo an Integer

- Example
- Let $n=110$ and $\phi=273$.
- We know that $\operatorname{gcd}(n, \phi)=1$ and $\operatorname{s}^{\prime} n+t^{\prime} \phi=1$, where $s^{\prime}=-67$ and $t^{\prime}=27$.
- Thus, 110(-67) mod $273=n s^{\prime} \bmod \phi=1$.
- Here $s=s^{\prime} \bmod \phi=-67 \bmod 273=206$.
- Therefore, the inverse of 110 modulo 273 is 206.

Computing an Inverse Modulo an Integer

- Show that the number s in the equation $n s \bmod \phi=1$
is unique.
- Proof.
- Suppose that $n s \bmod \phi=1=n s^{\prime} \bmod \phi, 0<s<\phi$, $0<s^{\prime}<\phi$.
- We must show that $s^{\prime}=s$.
- Now $s^{\prime}=\left(s^{\prime} \bmod \phi\right)(n s \bmod \phi)$

$$
\begin{aligned}
& =s^{\prime} n s \bmod \phi \\
& =\left(s^{\prime} n \bmod \phi\right)(s \bmod \phi) \\
& =s
\end{aligned}
$$

The RSA Public-Key Cryptosystem

- Note
- Cryptology is the study of systems, called cryptosystems, for secure communications.
- In a cryptosystem, the sender transforms the message before transmitting it, hoping that only authorized recipients can reconstruct the original message.
- The sender is said to encrypt the message, and the recipient is said to decrypt the message.

The RSA Public-Key Cryptosystem

- Example
- If a key is defined as
character:
ABCDEFGHIJKLMNOPQRSTUVWXYZ replaced by:
EIJFUAXVHWP GSRKOBTQYDMLZNC the message SEND MONEY would be encrypted as QARUESKRAN.
- The encrypted message SKRANEKRELIN would be decrypted as MONEY ON WAY.

The RSA Public-Key Cryptosystem

- The RSA Public-Key Cryptosystem
- Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman
- Each participant makes public an encryption key and hides a decryption key.
- To send a message, all one needs to do is look up the recipient's encryption key in a publicly distributed table.
- The recipient then decrypts the message using the hidden decryption key.
- Messages are represented as numbers.

The RSA Public-Key Cryptosystem

- Each prospective recipient chooses two primes p and q and computes $z=p q$.
- p and q are typically chosen so that each has 100 or more digits.
- Next, the prospective recipient computes $\phi=(p-$ $1)(q-1)$ and chooses an integer n such that $\operatorname{gcd}(n, \phi)$ $=1$.
- In practice, n is often chosen to be a prime.
- The pair (z, n) is then made public.
- Finally, the prospective recipient computes the unique number $s, 0<s<\phi$, satisfying $n s \bmod \phi=1$.
- The number s is kept secret and used to decrypt messages.

The RSA Public-Key Cryptosystem

- Example
- Suppose that we choose $p=23, q=31$, and $n=$ 29.
- Then $z=p q=713$ and $\phi=(p-1)(q-1)=660$.
- Now $s=569$ since $n s \bmod \phi=29.569 \bmod 660$ $=16501 \bmod 660=1$.
- The pair $(z, n)=(713,29)$ is made publicly available.
- To transmit $a=572$ to the holder of public key $(713,29)$, the sender computes $c=a^{n} \bmod z=$ $572^{29} \bmod 713=113$ and sends 113.
- The receiver computes $c^{s} \bmod z=113^{569} \mathrm{mod}$ $713=572$ in order to decrypt the message.

The RSA Public-Key Cryptosystem

- Example (continued)
- The main result that makes encryption and decryption work is that

$$
\begin{gathered}
a^{u} \bmod z=a \text { for all } 0 \leq a<z \text { and } \\
u \bmod \phi=1 .
\end{gathered}
$$

- Since $n s \bmod \phi=1$,

$$
\begin{aligned}
c^{s} \bmod & z \\
& =\left(a^{n} \bmod z\right)^{s} \bmod z \\
& =\left(a^{n}\right)^{s} \bmod z \\
& =a^{n s} \bmod z \\
& =a .
\end{aligned}
$$

Today's Topics
 Basic Principles
 Permutations and Combinations
 Algorithms for Generating
 Permutations
 Generalized Permutations and
 Combinations
 Binomial Coefficients and
 Combinatorial Identities
 The Pigeonhole Principle

OOO O

Counting Methods and the Pigeonhole Principle

Basic Principles

- Examples
- Kay's Quick Lunch
- Appetizers: Nachos, Salad
- Main courses: Hamburger, Cheeseburger, Fish Filet
- Beverages: Tea, Milk, Cola, Root Beer
- How many different lunches consist of one main course and one beverage?
- $3.4=12$
- How many different lunches consist of one main course and one optional beverage?
- $3.5=15$

Basic Principles

- Multiplication Principle
- If an activity can be constructed in t successive steps and step 1 can be done in n_{1} ways, step 2 can then be done in n_{2} ways, ..., and step t can then be done in n_{t} ways, then the number of different possible activities is $n_{1} \cdot n_{2} \cdots n_{t}$

Basic Principles

- Examples
- Melissa Virus
- The virus sends the e-mail to the first 50 addresses from the user's address book.
- How many copies of the message are sent after four iterations?

$$
-1+50+50 \cdot 50+50 \cdot 50 \cdot 50+50 \cdot 50 \cdot 50 \cdot 50=6,377,551
$$

- ABCDE
(a) How many strings of length 4 can be formed using the letters ABCDE if repetitions are not allowed?
(b) How many strings of (a) begin with the letter B ?
(c) How many strings of (a) do not begin with the letter B?

Basic Principles

- Examples
- Use the Multiplication Principle to show that a set $\left\{x_{1}, \ldots, x_{n}\right\}$ containing n elements has 2^{n} subsets.
- Let X be an n-element set. How many ordered pairs (A, B) satisfy $A \subseteq B \subseteq X$?
- We see that each element in X is in exactly one of $A, B-A$, or $X-B$.
- 3^{n}

Basic Principles

- Addition Principle
- Suppose that X_{1}, \ldots, X_{t} are sets and that the th set X_{i} has n_{i} elements.
- If $\left\{X_{1}, \ldots, X_{\}}\right\}$is a pairwise disjoint family (i.e., if $i \neq j, X_{i} \cap X_{j}=\varnothing$), the number of possible elements that can be selected from X_{1} or X_{2} or \ldots or X_{t} is $n_{1}+n_{2}+\ldots+n_{t}$.
- (Equivalently, the union $X_{1} \cup \ldots \cup X_{t}$ contains $n_{1}+n_{2}+\ldots+n_{t}$ elements.)

Basic Principles

- Examples
- In how many ways can we select two books from different subjects among five distinct computer science books, three distinct mathematics books, and two distinct art books?
- $15+10+6=31$

Permutations and Combinations

- Definition
- A permutation of n distinct elements x_{1}, \ldots, x_{n} is an ordering of the n elements x_{1}, \ldots, x_{n}.
- Example
- List all the permutations of three elements A, B, C.
- There are six permutations:
- $A B C, A C B, B A C, B C A, C A B$, and $C B A$.

Permutations and Combinations

- Theorem
- There are $n!$ permutations of n elements.
- Proof.
- We use the Multiplication Principle.
- A permutation of n elements can be constructed in n successive steps:
- Select the first element; select the second element; ...; select the last element.
- The first element can be selected in n ways. Once the first element has been selected, the second element can be selected in $n-1$ ways.
- Once the second element has been selected, the third element can be selected in $n-2$ ways, and so on.
- By the Multiplication Principle, there are $n(n-1)(n-2) \cdots 2 \cdot 1=n$! permutations of n elements.

Permutations and Combinations

- Examples
- How many permutations of 10 elements are there?
- $10!=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=3,628,800$
- How many permutations of the letters $A B C D E F$ contain the substring $D E F$?
- 4 ! = 24
- How many permutations of the letters $A B C D E F$ contain the letters $D E F$ together in any order?
- $4!\cdot 3!=24 \cdot 6=144$
- In how many ways can six persons be seated around a circular table? If a seating is obtained from another seating by having everyone move n seats clockwise, the seatings are considered identical.
- 5 ! = 120

Permutations and Combinations

- Definition
- An r-permutation of n (distinct) elements x_{1}, \ldots, x_{n} is an ordering of an r-element subset of $\left\{x_{1}, \ldots, x_{n}\right\}$. The number of r permutations of a set of n distinct elements is denoted $P(n, r)$.
- Example
- Examples of 2-permutations of a, b, c - ab, ba, ca.

Permutations and Combinations

- Theorem
- The number of r-permutations of a set of n distinct objects is $P(n, r)=n(n-1)(n-2) \cdots(n-r$ $+1), r \leq n$.
- Proof.
- Exercise
- Examples
- The number of 2-permutations of $X=\{a, b, c\}$ - $P(3,2)=3 \cdot 2=6$.
- In how many ways can we select a chairperson, vice-chairperson, secretary, and treasurer from a group of 10 persons?
- $P(10,4)=10 \cdot 9 \cdot 8 \cdot 7=5040$

Permutations and Combinations

- Note
- We may write $P(n, r)$ in terms of factorials:

$$
\text { - } \begin{aligned}
P(n, r) & =n(n-1) \cdots(n-r+1) \\
& =n(n-1) \cdots(n-r+1)(n-r) \cdots 2 \cdot 1 /(n-r) \cdots 2 \cdot 1 \\
& =n!/(n-r)!
\end{aligned}
$$

- Examples
$-P(10,4)$
- 10!//(10-4)! = 10!/6!
- In how many ways can seven distinct Martians and five distinct Jovians wait in line if no two Jovians stand together?
- $7!\cdot P(8,5)=5040 \cdot 6720=33,868,800$

Summary

- Introduction to

Number Theory

- The Euclidean

Algorithm

- The RSA Public-Key Cryptosystem
- Counting Methods and the Pigeonhole Principle
- Basic Principles
- Permutations

