- ० © ©

Discrete Mathematics

 CS204: Spring, 2008Jong C. Park
Computer Science Division, KAIST

Today's Topics
Introduction
Solving Recurrence Relations

0000

Recurrence Relations

Introduction

- Definition
- A recurrence relation for the sequence a_{0}, a_{1}, \ldots is an equation that relates a_{n} to certain of its predecessors $a_{0}, a_{1}, \ldots, a_{n-1}$.
- Initial conditions for the sequence a_{0}, a_{1}, \ldots are explicitly given values for a finite number of the terms of the sequence.
- Examples
- The Fibonacci sequence
- $f_{n}=f_{n-1}+f_{n-2}, n \geq 3$
- $f_{1}=1, f_{2}=1$

Introduction

- Examples
- Let S_{n} denote the number of subsets of an n element set. Find its recurrence relation.
- $S_{n}=2 S_{n-1}$
- $S_{0}=1$
- Let S_{n} denote the number of n-bit strings that do not contain the pattern 111. Develop a recurrence relation for S_{1}, S_{2}, \ldots and initial conditions that define the sequence S.
- Count the number of n-bit string that do not contain the pattern 111 (a) that begin with 0; (b) that begin with 10; and (c) that begin with 11.
- $S_{n}=S_{n-1}+S_{n-2}+S_{n-3}, n \geq 4$
- $S_{1}=2, S_{2}=4, S_{3}=7$

Introduction

- Example
- Tower of Hanoi
- The Tower of Hanoi is a puzzle consisting of three pegs mounted on a board and n disks of various sizes with holes in their centers.
- It is assumed that if a disk is on a peg, only a disk of smaller diameter can be placed on top of the first disk.
- Given all the disks stacked on one peg, the problem is to transfer the disks to another peg by moving one disk at a time.
- Let c_{n} denote the number of moves our solution takes to solve the n-disk puzzle. Find its recurrence relation.
$-c_{n}=2 c_{n-1}+1, n>1$
$-c_{1}=1$

Introduction

- Example
- The Cobweb in Economics
- Assume an economics model in which the supply and demand are given by linear equations.
- Specifically, the demand is given by the equation $p=a-b q$, where p is the price, q is the quantity, and a and b are positive parameters.
- The supply is given by the equation $p=k q$, where p is the price, q is the quantity, and k is a positive parameter.

Introduction

- Assume further that there is a time lag as the supply reacts to changes. We denote the discrete time intervals as $n=0,1, \ldots$.
- Assume that the demand is given by the equation $p_{n}=a-b q_{n}$; that is, at time n, the quantity q_{n} of the product will be sold at price p_{n}.
- Assume that the supply is given by the equation $p_{n}=k q_{n+1}$; that is, one unit of time is required for the manufacturer to adjust the quantity q_{n+1}, at time $n+1$, to the price p_{n}, at the prior time n.
- Solve the equation to obtain a relevant recurrence relation.
$-p_{n+1}=a-(b / k) p_{n}$

Introduction

- Example

- Ackermann's Function
- Ackermann's function can be defined by the recurrence relations
- $A(m, 0)=A(m-1,1), m=1,2, \ldots$
$-A(m, n)=A(m-1, A(m, n-1)), m=1,2, \ldots, n=1,2, \ldots$
$-A(0, n)=n+1, n=0,1, \ldots$
- Example

$$
\begin{aligned}
-A(1,1) & =A(0, A(1,0)) \\
& =A(0, A(0,1)) \\
& =A(0,2) \\
& =3
\end{aligned}
$$

Solving Recurrence Relations

- Examples
- Solve the recurrence relation:
- $a_{n}=a_{n-1}+3$
- $a_{1}=2$
- $a_{n}=a_{1}+(n-1) \cdot 3=2+3(n-1)$
- Solve the recurrence relation:
- $S_{n}=2 S_{n-1}$
- $S_{0}=1$
- $S_{n}=2 S_{n-1}=2\left(2 S_{n-2}\right)=\ldots=2^{n} S_{0}=2^{n}$

Solving Recurrence Relations

- Definition
- A linear homogeneous recurrence relation of order k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}, c_{k} \neq 0 .
$$

- Example
$-S_{n}=2 S_{n-1}$
$-f_{n}=f_{n-1}+f_{n-2}$

Solving Recurrence Relations

- The following shows examples that are not "linear homogeneous recurrence relations with constant coefficients".
$-a_{n}=3 a_{n-1} a_{n-2}$
$-a_{n}-a_{n-1}=2 n$
$-a_{n}=3 n a_{n-1}$

Solving Recurrence Relations

- Note
- The general method of solving linear homogeneous recurrence relations with constant coefficients is to find an explicit formula for the sequence defined by the recurrence relation.
- Example
- Solve the linear homogeneous recurrence relations with constant coefficients
- $a_{n}=5 a_{n-1}-6 a_{n-2}$
- $a_{0}=7, a_{1}=16$

Solving Recurrence Relations

- Solution
- Often in mathematics, when trying to solve a more difficult instance of some problem, we begin with an expression that solved a simpler version.
- For the first-order recurrence relation, we found that the solution was of the form $S_{n}=t^{n}$; thus for our first attempt at finding a solution of the second-order recurrence relation, we will search for a solution of the form $V_{n}=t^{n}$.
- If $V_{n}=t^{n}$ is to solve the recurrence relation, we must have $V_{n}=5 V_{n-1}-6 V_{n-2}$ or $t^{n}=5 t^{n-1}-6 t^{n-2}$ or $t^{n}-5 t^{n-1}$ $+6 t^{n-2}=0$.
Dividing by t^{n-2}, we obtain the equivalent equation $t^{2}-5 t^{1}+6=0$. Solving this, we find the solutions $t=2$, $t=3$.

Solving Recurrence Relations

- We thus have two solutions, $\mathrm{S}_{n}=2^{n}$ and $\mathrm{T}_{n}=3^{n}$.
- We can verify that if S and T are solutions of the preceding recurrence relation, then $b S+d T$, where b and d are any numbers whatever, is also a solution of that relation. In our case, if we define the sequence U by the equation

$$
U_{n}=b S_{n}+d T_{n}=b 2^{n}+d 3^{n},
$$

U is a solution of the given relation.

- To satisfy the initial conditions, we must have

$$
\begin{aligned}
& 7=U_{0}=b 2^{0}+d^{1} 3^{0}=b+d, \\
& 16=U_{1}=b 2^{1}+d 3^{1}=2 b+3 d .
\end{aligned}
$$

Solving these equations for b and d, we obtain $b=5, d=2$.

- Therefore, the sequence U defined by $U_{n}=5 \cdot 2^{n}+2 \cdot 3^{n}$ satisfies the recurrence relation and the initial conditions.
- We conclude that $a_{n}=U_{n}=5 \cdot 2^{n}+2 \cdot 3^{n}$, for $n=0,1, \ldots$.

Solving Recurrence Relations

- Theorem
- Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ be a second-order, linear homogeneous recurrence relation with constant coefficients.
- If S and T are solutions of the recurrence relation, then $U=b S+d T$ is also a solution of the relation.
- If r is a root of $t^{2}-c_{1} t-c_{2}=0$, then the sequence r^{n}, n $=0,1, \ldots$, is a solution of the recurrence relation.
- If a is the sequence defined by the recurrence relation, $a_{0}=C_{0}, a_{1}=C_{1}$, and r_{1} and r_{2} are roots of the preceding equation with $r_{1} \neq r_{2}$, then there exist constants b and d such that $a_{n}=b r_{1}^{n}+d r_{2}^{n}, n=0,1$,

Solving Recurrence Relations

- Proof.
- Since S and T are solutions of the relation,

$$
\mathrm{S}_{n}=\mathrm{c}_{1} \mathrm{~S}_{n-1}+\mathrm{c}_{2} \mathrm{~S}_{n-2}, \mathrm{~T}_{n}=\mathrm{c}_{1} \mathrm{~T}_{n-1}+\mathrm{c}_{2} \mathrm{~T}_{n-2} .
$$

- Multiply the first equation by b and the second by d and add, to obtain

$$
\begin{aligned}
\mathrm{U}_{n} & =b \mathrm{~S}_{n}+d \mathrm{~T}_{n} \\
& =\mathrm{c}_{1}\left(b \mathrm{~S}_{n-1}+d \mathrm{~T}_{n-1}\right)+\mathrm{c}_{2}\left(b \mathrm{~S}_{n-1}+d \mathrm{~T}_{n-2}\right) \\
& =\mathrm{c}_{1} \mathrm{U}_{n-1}+\mathrm{c}_{2} \mathrm{U}_{n-2} .
\end{aligned}
$$

- Therefore, U is a solution of the equation

$$
t^{2}-c_{1} t-c_{2}=0 .
$$

Solving Recurrence Relations

- Example
- More Population Growth
- Assume that the deer population of Rustic County is 200 at time $n=0$ and 220 at time $n=1$ and that the increase from time $n-1$ to time n is twice the increase from time $n-2$ to time $n-1$.
- Write a recurrence relation and an initial condition that define the deer population at time n and then solve the recurrence relation.

Solving Recurrence Relations

- Solution
- Let d_{n} denote the deer population at time n.

$$
\begin{aligned}
& -d_{0}=200, d_{1}=220 . \\
& -d_{n}-d_{n-1}=2\left(d_{n-1}-d_{n-2}\right) . \\
& -d_{n}=3 d_{n-1}-2 d_{n-2}
\end{aligned}
$$

- Solving $t^{2}-3 t+2=0$, we have roots 1 and 2 . Then the sequence d is of the form $d_{n}=b \cdot 1^{n}+$ $c \cdot 2^{n}=b+c 2^{n}$.
- To meet the initial conditions, we must have $200=$ $d_{0}=b+c, 220=d_{1}=b+2 c$. Solving for b and c, we find $b=180$, and $c=20$.
- Thus, d_{n} is given by $d_{n}=180+20 \cdot 2^{n}$.

Solving Recurrence Relations

- Example
- Find an explicit formula for the Fibonacci sequence.
- $f_{n}-f_{n-1}-f_{n-2}=0, n \geq 3$.
- $f_{1}=1, f_{2}=1$.
- Solution
- We begin by using the quadratic formula to solve $t^{2}-t-1=$ 0 . The solutions are $t=(1 \pm \sqrt{ } 5) / 2$. Thus the solution is of the form $f_{n}=b((1+\sqrt{5}) / 2)^{n}+c((1-\sqrt{5}) / 2)^{n}$.
- To satisfy the initial conditions, we must have $b((1+\sqrt{5}) / 2)+c((1-\sqrt{5}) / 2)=1, b((1+\sqrt{ } 5) / 2)^{2}+c((1-\sqrt{5}) / 2)^{2}=1$. Solving these equations for b and d, we obtain $b=1 / \sqrt{ } 5, d=-1 / \sqrt{ } 5$.
- Therefore, $f_{n}=1 / \sqrt{ } 5 \cdot((1+\sqrt{ } 5) / 2)^{n}-1 / \sqrt{5}((1-\sqrt{5}) / 2)^{n}$.

Solving Recurrence Relations

- Theorem
- Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ be a second-order, linear homogeneous recurrence relation with constant coefficients.
- Let a be the sequence satisfying the relation and $a_{0}=C_{0}, a_{1}=C_{1}$.
- If both roots of $t^{2}-c_{1} t-c_{2}=0$ are equal to r, then there exist constants b and d such that $a_{n}=b r^{n}+$ $d n r^{n}, n=0,1, \ldots$

Solving Recurrence Relations

- Proof.

- The proof of the previous theorem shows that the sequence $r^{n}, n=0,1, \ldots$, is a solution of the relation. We show that the sequence $n r^{n}, n=0,1, \ldots$, is also a solution of the relation.
- Since r is the only solution of the equation, we must have $t^{2}-c_{1} t-c_{2}=(t-r)^{2}$. It follows that $c_{1}=2 r, c_{2}=-r^{2}$.
- Now $a_{n}=c_{1}\left[(n-1) r^{n-1}\right]+c_{2}\left[(n-2) r^{n-2}\right]$

$$
\begin{aligned}
& =2 r(n-1) r^{n-1}-r^{2}(n-2) r^{n-2} \\
& =r^{n}[2(n-1)-(n-2)]=n r^{n}
\end{aligned}
$$

- Therefore, the sequence $n r^{n}, n=0,1, \ldots$, is a solution of the recurrence relation.
- The sequence U defined by $U_{n}=b r^{n}+d n r^{n}$ is a solution of the relation. With a similar proof in the previous theorem, there exist constants b and d such that $U_{0}=C_{0}$ and $U_{1}=C_{1}$.
- It follows that $U_{n}=a_{n}, n=0,1, \ldots$.

Solving Recurrence Relations

- Example
- Solve the recurrence relation $d_{n}=4\left(d_{n-1}-d_{n-2}\right)$ subject to the initial conditions $d_{0}=1=d_{1}$.
- According to the theorem, $S_{n}=r^{n}$ is a solution, where r is a solution of $t^{2}-4 t+4=0$. Thus we obtain the solution $S_{n}=2^{n}$.
- Since 2 is the only solution of the equation, $T_{n}=n 2^{n}$ is also a solution of the recurrence relation.
- Thus the general solution is of the form $U=a S+b T$.
- We must have $U_{0}=1=U_{1}$. The last equations become $a S_{0}+b T_{0}=a+0 b=1, a S_{1}+b T_{1}=2 a+2 b=1$.
- Solving for a and b, we obtain $a=1, b=-1 / 2$.
- Therefore the solution is $d_{n}=2 n-n 2^{n-1}$.

Solving Recurrence Relations

- Note
- For the general linear homogeneous recurrence relation of order k with constant coefficients $c_{1}, c_{2}, \ldots, c_{k}$, if r is a root of

$$
t^{k}-c_{1} 1^{k-1}-c_{2} t^{k-2}-\ldots-c_{k}=0
$$

of multiplicity m, it can be shown that

$$
r^{n}, n r^{m}, \ldots, n^{m-1} r^{n}
$$

are solutions of the equation.

Summary

- Recurrence Relations
- Solving Recurrence Relations

