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Today’s Topics

Introduction

Solving Recurrence Relations
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• Definition

– A recurrence relation for the sequence a0, 
a1, ... is an equation that relates an to certain 
of its predecessors a0, a1, ..., an-1. 

– Initial conditions for the sequence a0, a1, ... 
are explicitly given values for a finite number 
of the terms of the sequence. 

• Examples

– The Fibonacci sequence
• fn = fn-1 + fn-2, n  3

• f1 = 1, f2 = 1
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• Examples
– Let Sn denote the number of subsets of an n-

element set. Find its recurrence relation. 
• Sn = 2Sn-1

• S0 = 1

– Let Sn denote the number of n-bit strings that do 
not contain the pattern 111. Develop a 
recurrence relation for S1, S2, ... and initial 
conditions that define the sequence S.

• Count the number of n-bit string that do not contain the 
pattern 111 (a) that begin with 0; (b) that begin with 10; 
and (c) that begin with 11. 

• Sn = Sn-1 + Sn-2 + Sn-3, n  4

• S1 = 2, S2 = 4, S3 = 7
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• Example

– Tower of Hanoi
• The Tower of Hanoi is a puzzle consisting of three 

pegs mounted on a board and n disks of various sizes 
with holes in their centers.

– It is assumed that if a disk is on a peg, only a disk of 
smaller diameter can be placed on top of the first disk. 

– Given all the disks stacked on one peg, the problem is to 
transfer the disks to another peg by moving one disk at a 
time.

• Let cn denote the number of moves our solution takes 
to solve the n-disk puzzle. Find its recurrence relation. 

– cn = 2cn-1 + 1, n > 1

– c1 = 1
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• Example

– The Cobweb in Economics

• Assume an economics model in which the supply 

and demand are given by linear equations.

• Specifically, the demand is given by the equation 

p = a – bq, where p is the price, q is the quantity, 

and a and b are positive parameters. 

• The supply is given by the equation p = kq, where 

p is the price, q is the quantity, and k is a positive 

parameter. 
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• Assume further that there is a time lag as the 
supply reacts to changes. We denote the discrete 
time intervals as n = 0, 1, ... . 

• Assume that the demand is given by the equation 
pn = a – bqn; that is, at time n, the quantity qn of 
the product will be sold at price pn. 

• Assume that the supply is given by the equation 
pn = kqn+1; that is, one unit of time is required for 
the manufacturer to adjust the quantity qn+1, at 
time n + 1, to the price pn, at the prior time n. 

• Solve the equation to obtain a relevant recurrence 
relation.

– pn+1 = a – (b/k)pn
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• Example

– Ackermann’s Function
• Ackermann’s function can be defined by the 

recurrence relations
– A(m,0) = A(m-1,1), m = 1, 2, ...

– A(m,n) = A(m-1,A(m,n-1)), m = 1, 2, ..., n = 1, 2, ...

– A(0,n) = n + 1, n = 0, 1, ...

• Example
– A(1,1) = A(0, A(1,0))

= A(0, A(0,1))

= A(0,2)

= 3



• Examples

– Solve the recurrence relation:
• an = an-1 + 3

• a1 = 2

• an = a1 + (n-1)3 = 2 + 3(n-1)

– Solve the recurrence relation:
• Sn = 2Sn-1

• S0 = 1

• Sn = 2Sn-1 = 2(2Sn-2) = … = 2nS0 = 2n
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• Definition

– A linear homogeneous recurrence relation of order k

with constant coefficients is a recurrence relation of 

the form

an = c1an–1 + c2an–2 + … + ckan–k, ck0.

• Example

– Sn = 2Sn–1

– fn = fn–1 + fn–2
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• The following shows examples that are not 

“linear homogeneous recurrence relations with 

constant coefficients”.

– an = 3an–1an–2

– an – an–1 = 2n

– an = 3nan–1
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• Note

– The general method of solving linear 
homogeneous recurrence relations with constant 
coefficients is to find an explicit formula for the 
sequence defined by the recurrence relation. 

• Example

– Solve the linear homogeneous recurrence 
relations with constant coefficients

• an = 5an–1 – 6an–2

• a0 = 7, a1 = 16
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– Solution
• Often in mathematics, when trying to solve a more 

difficult instance of some problem, we begin with an 
expression that solved a simpler version. 

• For the first-order recurrence relation, we found that 
the solution was of the form Sn = tn; thus for our first 
attempt at finding a solution of the second-order 
recurrence relation, we will search for a solution of the 
form Vn = tn.

• If Vn = tn is to solve the recurrence relation, we must 
have Vn = 5Vn–1 – 6Vn–2 or tn = 5tn–1 – 6tn–2 or tn – 5tn–1

+ 6tn–2 = 0.
Dividing by tn–2, we obtain the equivalent equation 
t2 – 5t1 + 6 = 0. Solving this, we find the solutions t = 2, 
t = 3. 
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• We thus have two solutions, Sn = 2n and Tn = 3n.

• We can verify that if S and T are solutions of the preceding 
recurrence relation, then bS + dT, where b and d are any 
numbers whatever, is also a solution of that relation. In our 
case, if we define the sequence U by the equation 

Un = bSn + dTn = b2n + d3n, 
U is a solution of the given relation. 

• To satisfy the initial conditions, we must have 
7 = U0 = b20 + d30 = b + d, 
16 = U1 = b21 + d31 = 2b + 3d.

Solving these equations for b and d, we obtain b = 5, d = 2.

• Therefore, the sequence U defined by Un = 5∙2n + 2∙3n

satisfies the recurrence relation and the initial conditions. 

• We conclude that an = Un = 5∙2n + 2∙3n, for n = 0, 1, ….
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• Theorem

– Let an = c1an–1 + c2an–2 be a second-order, linear 
homogeneous recurrence relation with constant 
coefficients. 

• If S and T are solutions of the recurrence relation, then 
U = bS + dT is also a solution of the relation. 

• If r is a root of t2 – c1t – c2 = 0, then the sequence rn, n
= 0, 1, …, is a solution of the recurrence relation.

• If a is the sequence defined by the recurrence relation, 
a0 = C0, a1 = C1, and r1 and r2 are roots of the 
preceding equation with r1  r2, then there exist 
constants b and d such that an = br1

n + dr2
n, n = 0, 1, 

….



• Proof.

• Since S and T are solutions of the relation, 

Sn = c1Sn-1 + c2Sn-2,  Tn = c1Tn-1 + c2Tn-2.

• Multiply the first equation by b and the second by d

and add, to obtain 

Un = bSn + dTn

= c1(bSn-1 + dTn-1) + c2(bSn-1 + dTn-2) 

= c1Un-1 + c2Un-2.

• Therefore, U is a solution of the equation 

t2 – c1t – c2 = 0. 
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• Example

– More Population Growth

• Assume that the deer population of Rustic County 

is 200 at time n = 0 and 220 at time n = 1 and that 

the increase from time n–1 to time n is twice the 

increase from time n–2 to time n–1. 

• Write a recurrence relation and an initial condition 

that define the deer population at time n and then 

solve the recurrence relation.
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– Solution
• Let dn denote the deer population at time n. 

– d0 = 200, d1 = 220.

– dn – dn-1 = 2(dn-1 – dn-2).

– dn = 3dn-1 – 2dn-2.

• Solving t2 – 3t + 2 = 0, we have roots 1 and 2. 
Then the sequence d is of the form dn = b∙1n + 
c∙2n = b + c2n.

• To meet the initial conditions, we must have 200 = 
d0 = b + c, 220 = d1 = b + 2c. Solving for b and c, 
we find b = 180, and c = 20. 

• Thus, dn is given by dn = 180 + 20∙2n. 



19

• Example

– Find an explicit formula for the Fibonacci sequence.
• fn – fn–1 – fn–2 = 0,  n ≥ 3.

• f1 = 1, f2 = 1.

– Solution
• We begin by using the quadratic formula to solve t2 –t – 1 = 

0. The solutions are t = (1 √5)/2. Thus the solution is of the 
form fn = b((1+√5)/2)n + c((1–√5)/2)n.

• To satisfy the initial conditions, we must have 
b((1+√5)/2) + c((1–√5)/2) = 1, b((1+√5)/2)2 + c((1–√5)/2)2 = 1. 
Solving these equations for b and d, we obtain 
b = 1/√5, d = -1/√5.

• Therefore, fn = 1/√5∙((1+√5)/2)n – 1/√5((1–√5)/2)n.
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• Theorem

– Let an = c1an–1 + c2an–2 be a second-order, 

linear homogeneous recurrence relation with 

constant coefficients. 

• Let a be the sequence satisfying the relation and 

a0 = C0, a1 = C1. 

• If both roots of t2 – c1t – c2 = 0 are equal to r, then 

there exist constants b and d such that an = brn +

dnrn, n = 0, 1, ….
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– Proof.
• The proof of the previous theorem shows that the sequence 

rn , n = 0, 1, …, is a solution of the relation. We show that the 
sequence nrn, n = 0, 1, …, is also a solution of the relation. 

– Since r is the only solution of the equation, we must have 
t2 – c1t – c2 = (t – r)2. It follows that c1 = 2r, c2 = -r2. 

– Now an = c1[(n–1)rn-1] + c2[(n–2)rn-2] 

= 2r(n–1)rn-1 – r2(n–2)rn-2

= rn[2(n–1) – (n–2)] = nrn

– Therefore, the sequence nrn, n = 0, 1, …, is a solution of the 
recurrence relation.

• The sequence U defined by Un = brn + dnrn is a solution of 
the relation. With a similar proof in the previous theorem, 
there exist constants b and d such that U0 = C0 and U1 = C1.

• It follows that Un = an, n = 0, 1, ….
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• Example
– Solve the recurrence relation dn = 4(dn-1–dn-2) 

subject to the initial conditions d0 = 1 = d1.
• According to the theorem, Sn = rn is a solution, where r

is a solution of t2 – 4t + 4 = 0. Thus we obtain the 
solution Sn = 2n.

• Since 2 is the only solution of the equation, Tn = n2n is 
also a solution of the recurrence relation.

• Thus the general solution is of the form U = aS + bT. 

• We must have U0 = 1 = U1. The last equations become 
aS0 + bT0 = a + 0b = 1, aS1 + bT1 = 2a + 2b = 1.

• Solving for a and b, we obtain a = 1, b = -1/2. 

• Therefore the solution is dn = 2n – n2n-1.
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• Note

– For the general linear homogeneous 
recurrence relation of order k with constant 
coefficients c1, c2, …, ck, 
if r is a root of 

tk – c1t
k-1 – c2t

k-2 – … – ck = 0 
of multiplicity m, it can be shown that

rn, nrn, …, nm-1rn 

are solutions of the equation. 



• Recurrence Relations

• Solving Recurrence 

Relations
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