

Discrete Mathematics CS204: Spring, 2008

Jong C. Park Computer Science Division, KAIST Today's Topics Introduction Solving Recurrence Relations

Recurrence Relations

2

Definition

- A recurrence relation for the sequence a_0 , a_1 , ... is an equation that relates a_n to certain of its predecessors a_0 , a_1 , ..., a_{n-1} .
- Initial conditions for the sequence a_0 , a_1 , ... are explicitly given values for a finite number of the terms of the sequence.
- Examples
 - The Fibonacci sequence
 - $f_n = f_{n-1} + f_{n-2}, n \ge 3$
 - $f_1 = 1, f_2 = 1$

Examples

- Let S_n denote the number of subsets of an *n*-element set. Find its recurrence relation.
 - $S_n = 2S_{n-1}$
 - $S_0 = 1$
- Let S_n denote the number of *n*-bit strings that do not contain the pattern 111. Develop a recurrence relation for S_1 , S_2 , ... and initial conditions that define the sequence S.
 - Count the number of n-bit string that do not contain the pattern 111 (a) that begin with 0; (b) that begin with 10; and (c) that begin with 11.
 - $S_n = S_{n-1} + S_{n-2} + S_{n-3}, n \ge 4$
 - $S_1 = 2, S_2 = 4, S_3 = 7$

- Example
 - Tower of Hanoi

 $- c_1 = 1$

- The Tower of Hanoi is a puzzle consisting of three pegs mounted on a board and n disks of various sizes with holes in their centers.
 - It is assumed that if a disk is on a peg, only a disk of smaller diameter can be placed on top of the first disk.
 - Given all the disks stacked on one peg, the problem is to transfer the disks to another peg by moving one disk at a time.
- Let c_n denote the number of moves our solution takes to solve the *n*-disk puzzle. Find its recurrence relation.
 c_n = 2c_{n-1} + 1, n > 1

Example

The Cobweb in Economics

- Assume an economics model in which the supply and demand are given by linear equations.
- Specifically, the demand is given by the equation *p* = *a* - *bq*, where *p* is the price, *q* is the quantity, and *a* and *b* are positive parameters.
- The supply is given by the equation p = kq, where p is the price, q is the quantity, and k is a positive parameter.

- Assume further that there is a time lag as the supply reacts to changes. We denote the discrete time intervals as n = 0, 1,
- Assume that the demand is given by the equation $p_n = a bq_n$; that is, at time *n*, the quantity q_n of the product will be sold at price p_n .
- Assume that the supply is given by the equation $p_n = kq_{n+1}$; that is, one unit of time is required for the manufacturer to adjust the quantity q_{n+1} , at time n + 1, to the price p_n , at the prior time n.
- Solve the equation to obtain a relevant recurrence relation.

$$-p_{n+1} = a - (b/k)p_n$$

Example

- Ackermann's Function
 - Ackermann's function can be defined by the recurrence relations

8

-A(m,0) = A(m-1,1), m = 1, 2, ...

-A(m,n) = A(m-1,A(m,n-1)), m = 1, 2, ..., n = 1, 2, ...

-A(0,n) = n + 1, n = 0, 1, ...

Example

- A(1,1) = A(0, A(1,0))= A(0, A(0,1)) = A(0,2) = 3

Examples

Solve the recurrence relation:

• $a_n = a_{n-1} + 3$

• $a_1 = 2$

• $a_n = a_1 + (n-1) \cdot 3 = 2 + 3(n-1)$

Solve the recurrence relation:

- $S_n = 2S_{n-1}$
- $S_0 = 1$

• $S_n = 2S_{n-1} = 2(2S_{n-2}) = \dots = 2^n S_0 = 2^n$

9

- Definition
 - A linear homogeneous recurrence relation of order k with constant coefficients is a recurrence relation of the form

10

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}, c_k \neq 0.$

- Example
 - $-S_{n} = 2S_{n-1}$ $-f_{n} = f_{n-1} + f_{n-2}$

 The following shows examples that are not "linear homogeneous recurrence relations with constant coefficients".

11

- $-a_n = 3a_{n-1}a_{n-2}$ $-a_n - a_{n-1} = 2n$
- $-a_{n}=3na_{n-1}$

Note

 The general method of solving linear homogeneous recurrence relations with constant coefficients is to find an explicit formula for the sequence defined by the recurrence relation.

Example

 Solve the linear homogeneous recurrence relations with constant coefficients

•
$$a_n = 5a_{n-1} - 6a_{n-1}$$

• $a_0 = 7, a_1 = 16$

Solution

- Often in mathematics, when trying to solve a more difficult instance of some problem, we begin with an expression that solved a simpler version.
- For the first-order recurrence relation, we found that the solution was of the form $S_n = t^n$; thus for our first attempt at finding a solution of the second-order recurrence relation, we will search for a solution of the form $V_n = t^n$.
- If $V_n = t^n$ is to solve the recurrence relation, we must have $V_n = 5V_{n-1} - 6V_{n-2}$ or $t^n = 5t^{n-1} - 6t^{n-2}$ or $t^n - 5t^{n-1} + 6t^{n-2} = 0$. Dividing by t^{n-2} , we obtain the equivalent equation $t^2 - 5t^1 + 6 = 0$. Solving this, we find the solutions t = 2, t = 3.

- We thus have two solutions, $S_n = 2^n$ and $T_n = 3^n$.
- We can verify that if S and T are solutions of the preceding recurrence relation, then bS + dT, where b and d are any numbers whatever, is also a solution of that relation. In our case, if we define the sequence U by the equation

 $U_n = bS_n + dT_n = b2^n + d3^n$, U is a solution of the given relation.

- To satisfy the initial conditions, we must have
 7 = U₀ = b2⁰ + d3⁰ = b + d,
 16 = U₁ = b2¹ + d3¹ = 2b + 3d.
 Solving these equations for b and d, we obtain b = 5, d = 2.
- Therefore, the sequence U defined by $U_n = 5 \cdot 2^n + 2 \cdot 3^n$ satisfies the recurrence relation and the initial conditions.

• We conclude that $a_n = U_n = 5 \cdot 2^n + 2 \cdot 3^n$, for n = 0, 1,

Theorem

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ be a second-order, linear homogeneous recurrence relation with constant coefficients.
 - If S and T are solutions of the recurrence relation, then U = bS + dT is also a solution of the relation.
 - If *r* is a root of $t^2 c_1 t c_2 = 0$, then the sequence r^n , n = 0, 1, ..., is a solution of the recurrence relation.
 - If *a* is the sequence defined by the recurrence relation, $a_0 = C_0$, $a_1 = C_1$, and r_1 and r_2 are roots of the preceding equation with $r_1 \neq r_2$, then there exist constants *b* and *d* such that $a_n = br_1^n + dr_2^n$, n = 0, 1,

• Proof.

- Since S and T are solutions of the relation,
- $S_n = c_1 S_{n-1} + c_2 S_{n-2}, T_n = c_1 T_{n-1} + c_2 T_{n-2}.$ • Multiply the first equation by *b* and the second by *d*

and add, to obtain

- $U_{n} = bS_{n} + dT_{n}$ = $c_{1}(bS_{n-1} + dT_{n-1}) + c_{2}(bS_{n-1} + dT_{n-2})$ = $c_{1}U_{n-1} + c_{2}U_{n-2}$.
- Therefore, U is a solution of the equation
 - $t^2 c_1 t c_2 = 0.$

Example

- More Population Growth
 - Assume that the deer population of Rustic County is 200 at time n = 0 and 220 at time n = 1 and that the increase from time n-1 to time n is twice the increase from time n-2 to time n-1.
 - Write a recurrence relation and an initial condition that define the deer population at time *n* and then solve the recurrence relation.

17

Solution

- Let d_n denote the deer population at time n. - $d_0 = 200$, $d_1 = 220$.
 - $-\overline{d_{n}-d_{n-1}} = 2(\overline{d_{n-1}-d_{n-2}}).$ $-\overline{d_{n}} = 3d_{n-1} 2d_{n-2}.$
- Solving $t^2 3t + 2 = 0$, we have roots 1 and 2. Then the sequence *d* is of the form $d_n = b \cdot 1^n + c \cdot 2^n = b + c 2^n$.
- To meet the initial conditions, we must have $200 = d_0 = b + c$, $220 = d_1 = b + 2c$. Solving for *b* and *c*, we find b = 180, and c = 20.

• Thus, d_n is given by $d_n = 180 + 20 \cdot 2^n$.

Example

Find an explicit formula for the Fibonacci sequence.

- $f_n f_{n-1} f_{n-2} = 0, n \ge 3.$
- $f_1 = 1, f_2 = 1.$
- Solution
 - We begin by using the quadratic formula to solve $t^2 t 1 = 0$. The solutions are $t = (1 \pm \sqrt{5})/2$. Thus the solution is of the form $f_n = b((1+\sqrt{5})/2)^n + c((1-\sqrt{5})/2)^n$.
 - To satisfy the initial conditions, we must have $b((1+\sqrt{5})/2) + c((1-\sqrt{5})/2) = 1$, $b((1+\sqrt{5})/2)^2 + c((1-\sqrt{5})/2)^2 = 1$. Solving these equations for *b* and *d*, we obtain $b = 1/\sqrt{5}$, $d = -1/\sqrt{5}$.

• Therefore, $f_n = 1/\sqrt{5} \cdot ((1+\sqrt{5})/2)^n - 1/\sqrt{5}((1-\sqrt{5})/2)^n$.

Theorem

- Let $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ be a second-order, linear homogeneous recurrence relation with constant coefficients.
 - Let *a* be the sequence satisfying the relation and $a_0 = C_0$, $a_1 = C_1$.
 - If both roots of $t^2 c_1 t c_2 = 0$ are equal to *r*, then there exist constants *b* and *d* such that $a_n = br^n + dnr^n$, n = 0, 1, ...

Proof.

- The proof of the previous theorem shows that the sequence r^n , n = 0, 1, ..., is a solution of the relation. We show that the sequence nr^n , n = 0, 1, ..., is also a solution of the relation.
 - Since *r* is the only solution of the equation, we must have $t^2 c_1 t c_2 = (t r)^2$. It follows that $c_1 = 2r$, $c_2 = -r^2$.
 - Now $a_n = c_1[(n-1)r^{n-1}] + c_2[(n-2)r^{n-2}]$
 - $= 2r(n-1)r^{n-1} r^2(n-2)r^{n-2}$ = $r^n[2(n-1) - (n-2)] = nr^n$
 - Therefore, the sequence nr^n , n = 0, 1, ..., is a solution of the recurrence relation.
- The sequence U defined by $U_n = br^n + dnr^n$ is a solution of the relation. With a similar proof in the previous theorem, there exist constants b and d such that $U_0 = C_0$ and $U_1 = C_1$.

• It follows that $U_n = a_n$, $n = 0, 1, \dots$

Example

- Solve the recurrence relation $d_n = 4(d_{n-1}-d_{n-2})$ subject to the initial conditions $d_0 = 1 = d_1$.
 - According to the theorem, $S_n = r^n$ is a solution, where r is a solution of $t^2 4t + 4 = 0$. Thus we obtain the solution $S_n = 2^n$.
 - Since 2 is the only solution of the equation, $T_n = n2^n$ is also a solution of the recurrence relation.
 - Thus the general solution is of the form U = aS + bT.
 - We must have $U_0 = 1 = U_1$. The last equations become $aS_0 + bT_0 = a + 0b = 1$, $aS_1 + bT_1 = 2a + 2b = 1$.
 - Solving for a and b, we obtain a = 1, b = -1/2.
 - Therefore the solution is $d_n = 2n n2^{n-1}$.

Note

- For the general linear homogeneous recurrence relation of order *k* with constant coefficients $c_1, c_2, ..., c_k$, if *r* is a root of $t^k - c_1 t^{k-1} - c_2 t^{k-2} - ... - c_k = 0$ of multiplicity *m*, it can be shown that $r^n, nr^n, ..., n^{m-1}r^n$ are solutions of the equation.

- Recurrence Relations
- Solving Recurrence Relations

