Discrete Mathematics
CS204: Spring, 2008
Jong C. Park
Computer Science Division, KAIST
Today’s Topics
Introduction
Paths and Cycles
Hamiltonian Cycles and the Traveling Salesperson Problem
A Shortest-Path Algorithm
Representations of Graphs
Isomorphisms of Graphs
Planar Graphs

Graph Theory
Definition

- A graph (or undirected graph) G consists of a set V of vertices (or nodes) and a set E of edges (or arcs) such that each edge $e \in E$ is associated with an unordered pair of vertices.

- If there is a unique edge e associated with the vertices v and w, we write $e = (v, w)$ or $e = (w, v)$.

 - In this context, (v, w) denotes an edge between v and w in an undirected graph and not an ordered pair.
A directed graph (or digraph) \(G \) consists of a set \(V \) of vertices (or nodes) and a set \(E \) of edges (or arcs) such that each edge \(e \in E \) is associated with the ordered pair \((v, w)\) of vertices.

- If there is a unique edge \(e \) associated with the ordered pair \((v, w)\) of vertices, we write \(e = (v, w) \), which denotes an edge from \(v \) to \(w \).

- An edge \(e \) in a graph (undirected or directed) that is associated with the pair of vertices \(v \) and \(w \) is said to be incident on \(v \) and \(w \), and \(v \) and \(w \) are said to be incident on \(e \) and to be adjacent vertices.
If G is a graph (undirected or directed) with vertices V and edges E, we write $G = (V,E)$.

Unless specified otherwise, the sets E and V are assumed to be finite and V is assumed to be nonempty.
Example
- Find the (undirected) graph G from the part of the Wyoming highway system.
 - $V = \{\text{Gre, She, Wor, Buf, Gil, Sho, Cas, Dou, Lan, Mud}\}$
 - $E = \{e_1, e_2, \ldots, e_{13}\}$

Note
- In a directed graph, the directed edges are indicated by arrows. (cf. Figure 8.1.4)
Introduction

• Note
 – parallel edges
 • edges that are associated with the same vertex pair
 – loop
 • an edge incident on a single vertex
 – isolated vertex
 • a vertex that is not incident on any edge
 – simple graph
 • a graph with neither loops nor parallel edges

• Example
 – Figure 8.1.2
• Example
 – Manufacturing problem
 • A graph with numbers on the edges is called a weighted graph.
 • If edge e is labeled k, we say that the weight of edge e is k.
 • In a weighted graph, the length of a path is the sum of the weights of the edges in the path.
 • A path of minimum length that visits every vertex exactly one time represents the optimal path for the drill press to follow.
Introduction

• Examples
 – Bacon Numbers
 • Actor Kevin Bacon
 – Similarity Graphs (of a program)
 • The number of lines
 • The number of return statements
 • The number of function calls
 – The n-Cube (Hypercube)
• Definition
 – The complete graph on \(n \) vertices, denoted \(K_n \), is the simple graph with \(n \) vertices in which there is an edge between every pair of distinct vertices.

• Example
 – the complete graph on four vertices, \(K_4 \)
• **Definition**

 - A graph $G = (V,E)$ is **bipartite** if there exist subsets V_1 and V_2 (either possibly empty) of V such that $V_1 \cap V_2 = \emptyset$, $V_1 \cup V_2 = V$, and each edge in E is incident on one vertex in V_1 and one vertex in V_2.

• **Examples**

 - Are the following graphs bipartite?

 - the graph in Figure 8.1.13
 - the graph in Figure 8.1.14
 - the complete graph K_1 on one vertex
Introduction

• Definition
 – The complete bipartite graph on \(m \) and \(n \) vertices, denoted \(K_{m,n} \), is the simple graph whose vertex set is partitioned into sets \(V_1 \) with \(m \) vertices and \(V_2 \) with \(n \) vertices in which the edge set consists of all edges of the form \((v_1, v_2)\) with \(v_1 \in V_1 \) and \(v_2 \in V_2 \).

• Example
 – the complete bipartite graph on two and four vertices, \(K_{2,4} \)
Paths and Cycles

• Definition
 – Let v_0 and v_n be vertices in a graph.
 – A path from v_0 to v_n of length n is an alternating sequence of $n+1$ vertices and n edges beginning with vertex v_0 and ending with vertex v_n, $(v_0, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v_n)$, in which edge e_i is incident on vertices v_{i-1} and v_i for $i = 1, ..., n$.

• Example
 – Find a path of length 4 from vertex 1 to vertex 2 in the graph of Figure 8.2.1.
Note
- In the absence of parallel edges, in denoting a path we may suppress the edges.
 * Example: (1,2,3,4,2)

Definition
- A graph G is connected if given any vertices v and w in G, there is a path from v to w.

Examples
- Are the following graphs connected?
 * the graph G of Figure 8.2.1
 * the graph G of Figure 8.2.2
• **Definition**
 - Let $G = (V, E)$ be a graph.
 - We call (V', E') a **subgraph** of G if
 (a) $V' \subseteq V$ and $E' \subseteq E$.
 (b) For every edge $e' \in E'$, if e' is incident on v' and w', then $v', w' \in V'$.

• **Examples**
 - Is the graph $G' = (V', E')$ of Figure 8.2.3 a subgraph of the graph $G = (V, E)$ of Figure 8.2.4?
 - Find all subgraphs of the graph G of Figure 8.2.5 having at least one vertex.
Definition

- Let G be a graph and let v be a vertex in G.
- The subgraph G' of G consisting of all edges and vertices in G that are contained in some path beginning at v is called the component of G containing v.

Examples

- Find the component(s) of the graph G of Figure 8.2.1.
- Let G be the graph of Figure 8.2.2.
 - Find the component of G containing v_3.
 - the subgraph $G_1 = (V_1, E_1)$, $V_1 = \{v_1, v_2, v_3\}$, $E_1 = \{e_1, e_2, e_3\}$.
 - Find the component of G containing v_4.
 - Find the component of G containing v_5.
• Definition
 – Let \(v \) and \(w \) be vertices in a graph \(G \).
 • A simple path from \(v \) to \(w \) is a path from \(v \) to \(w \) with no repeated vertices.
 • A cycle (or circuit) is a path of nonzero length from \(v \) to \(v \) with no repeated edges.
 • A simple cycle is a cycle from \(v \) to \(v \) in which, except for the beginning and ending vertices that are both equal to \(v \), there are no repeated vertices.

• Example
 – the graph of Figure 8.2.1
Paths and Cycles

• Example
 – Königsberg Bridge Problem

• Note
 – an Euler cycle
 • a cycle in a graph G that includes all of the edges and all of the vertices of G
 – the degree of a vertex v, $(\delta(v))$
 • the number of edges incident on v
• Theorem
 – If a graph G has an Euler cycle, then G is connected and every vertex has even degree.

• Theorem
 – If G is a connected graph and every vertex has even degree, then G has an Euler cycle.
 – Proof.
 • The proof is by induction on the number n of edges in G.
Example

- Let G be the graph of Figure 8.2.10.
 - Use Theorem 8.2.18 to verify that G has an Euler cycle.
 - Find an Euler cycle for G.

Paths and Cycles
Example

- A domino is a rectangle divided into two squares with each square numbered one of 0, 1, ..., 6. Two squares on a single domino can have the same number.

- Show that distinct dominoes can be arranged in a circle so that touching dominoes have adjacent squares with identical numbers.

 - We model the situation as a graph G with seven vertices labeled 0, 1, ..., 6. The edges represent the dominoes: There is one edge between each distinct pair of vertices and there is one loop at each vertex. Notice that G is connected.
The dominoes can be arranged in a circle so that touching dominoes have adjacent squares with identical numbers if and only if G contains an Euler cycle.

Since the degree of each vertex is 8, each vertex has even degree. By Theorem 8.2.18, G has an Euler cycle.

Therefore, the dominoes can be arranged in a circle so that touching dominoes have adjacent squares with identical numbers.
Theorem
- If G is a graph with m edges and vertices $\{v_1, v_2, ..., v_n\}$, then $\sum_{i=1}^{n} \delta(v_i) = 2m$. In particular, the sum of the degrees of all the vertices in a graph is even.

Corollary
- In any graph, there are an even number of vertices of odd degree.
Paths and Cycles

- Theorem
 - A graph has a path with no repeated edges from v to w ($v \neq w$) containing all the edges and vertices if and only if it is connected and v and w are the only vertices having odd degree.

- Theorem
 - If a graph G contains a cycle from v to v, G contains a simple cycle from v to v.
Summary

• Paths and Cycles
• Hamiltonian Cycles and the Traveling Salesperson Problem
• A Shortest-Path Algorithm
• Representations of Graphs
• Isomorphisms of Graphs
• Planar Graphs