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Hamiltonian Cycles and the 
Traveling Salesperson Problem

• Hamiltonian cycle

– a cycle in a graph G that contains each vertex in G
exactly once, except for the starting and ending 
vertex that appears twice. 

• Examples

– Determine if the following graphs have a 
Hamiltonian cycle.
• the graph of Figure 8.3.4

• the graph of Figure 8.3.5

• the graph of Figure 8.3.6

• the graph of Figure 8.3.7
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Hamiltonian Cycles and the 
Traveling Salesperson Problem

• Traveling salesperson problem

– Given a weighted graph G, find a minimum-length 
Hamiltonian cycle in G. 

• Example

– the graph of Figure 8.3.8
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Hamiltonian Cycles and the 
Traveling Salesperson Problem

• Models for parallel computation

– ring model

– n-cube

• Problem

– When can an n-cube simulate a ring model with 2n

processors?

– Equivalently, when does an n-cube contain a 
Hamiltonian cycle?
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Hamiltonian Cycles and the 
Traveling Salesperson Problem

• Note

– The n-cube has a Hamiltonian cycle if and only if n
 2 and there is a sequence, s1, s2, ..., s2n, where 
each si is a string of n-bits, satisfying:
• Every n-bit string appears somewhere in the sequence.

• si and si+1 differ in exactly one bit, i = 1, ..., 2n-1.

• s
2n and s1 differ in exactly one bit.

– The sequence above is called a Gray code.

– When n  2, a Gray code corresponds to the 
Hamiltonian cycle s1, s2, ..., s2n, s1.
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Hamiltonian Cycles and the 
Traveling Salesperson Problem

• Theorem

– Let G1 denote the sequence 0, 1. We define Gn in 
terms of Gn-1 by the following rules:
(a) Let GR

n-1 denote the sequence Gn-1 written in reverse.

(b) Let G’n-1 denote the sequence obtained by prefixing each 
member of Gn-1 with 0.

(c) Let G’’n-1 denote the sequence obtained by prefixing each 
member of GR

n-1 with 1.

(d) Let Gn be the sequence consisting of G’n-1 followed by 
G’’n-1. 

Then Gn is a Gray code for every positive integer n.

– Proof.
• The proof is done by induction on n.
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Hamiltonian Cycles and the 
Traveling Salesperson Problem

• Corollary

– The n-cube has a Hamiltonian cycle for every 
positive integer n  2. 

• Examples

– Construct the Gray code G3 beginning with G1

– The Knight’s Tour
• A knight’s tour of an n x n board begins at some square, 

visits each square exactly once making legal moves, and 
returns to the initial square. 

• The problem is to determine for which n a knight’s tour 
exists.
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A Shortest-Path Algorithm
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A Shortest-Path Algorithm

• Theorem

– Dijkstra’s shortest-path algorithm correctly finds the 
length of a shortest path from a to z.

• Example

– Find a shortest path from a to z and its length for 
the graph of Figure 8.4.7.

• Theorem

– For input consisting of an n-vertex, simple, 
connected, weighted graph, Dijkstra’s algorithm has 
worst-case run time (n2).
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Representations of Graphs

• Adjacency Matrix

– Select an ordering of the vertices, say a, b, c, d, e.

– Label the rows and columns of a matrix with the 
ordered vertices.

– The entry in this matrix in row i, column j, i  j, is 
the number of edges incident on i and j. If i = j, the 
entry is twice the number of loops incident on i.

– The degree of a vertex v in a graph G is obtained 
by summing row v or column v in G’s adjacency 
matrix.
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Representations of Graphs

• Theorem

– If A is the adjacency matrix of a simple graph, the 
ijth entry of An is equal to the number of paths of 
length n from vertex i to vertex j, n = 1, 2, ... .

– Proof.
• Use induction on n.
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Representations of Graphs

• Incidence Matrix

– We label the rows with the vertices and the columns 
with the edges (in some arbitrary order). 

– The entry for row v and column e is 1 if e is incident on 
v and 0 otherwise.

• Example
– Find the incidence matrix for the graph of Figure 8.5.4.

• Note
– In a graph without loops, each column has two 1’s and 

the sum of a row gives the degree of the vertex 
identified with that row.
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Isomorphisms of Graphs

• Definition

– Graphs G1 and G2 are isomorphic if there is a one-
to-one, onto function f from the vertices of G1 to 
the vertices of G2 and a one-to-one, onto function 
g from the edges of G1 to the edges of G2, so that 
an edge e is incident on v and w in G1 if and only if 
the edge g(e) is incident on f(v) and f(w) in G2. 

– The pair of functions f and g is called an 
isomorphism of G1 onto G2. 

• Example

– Define an isomorphism for the graphs G1 and G2 of 
Figure 8.6.1.
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Isomorphisms of Graphs

• Example
– The Mesh Model for Parallel Computation

• The two dimensional mesh model for parallel computation 
when described as a graph consists of a rectangular array 
of connected vertices. 

– Problem
• When can an n-cube simulate a two-dimensional mesh?

• When does an n-cube contain a subgraph isomorphic to a 
two-dimensional mesh?

– Answer
• If M is a mesh p vertices by q vertices, where p ≤ 2i and q 

≤ 2j, then the (i+j)-cube contains a subgraph isomorphic 
to M. 
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Isomorphisms of Graphs

• Theorem
– Graphs G1 and G2 are isomorphic if and only if for 

some ordering of their vertices, their adjacency 
matrices are equal. 

• Corollary
– Let G1 and G2 be simple graphs. The following are 

equivalent.
(a) G1 and G2 are isomorphic.

(b) There is a one-to-one, onto function f from the vertex set 
of G1 to the vertex set of G2 satisfying the following: 

Vertices v and w are adjacent in G1 if and only if the 
vertices f(v) and f(w) are adjacent in G2.
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Isomorphisms of Graphs

• Example

– Determine if G1 and G2 in Figure 8.6.1 are 
isomorphic by examining their adjacency matrices.

• Note

– A property P is an invariant if whenever G1 and G2

are isomorphic graphs: 

If G1 has property P, G2 also has property P. 

– Examples
• “has e edges”

• “has n vertices”
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Isomorphisms of Graphs

• Example

– Use the notion of an invariant to determine if the 
graphs G1 and G2 in Figure 8.6.3 are isomorphic.
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Isomorphisms of Graphs

• Examples

– Show that if k is a positive integer, “has a vertex of 
degree k” is an invariant.
• Proof sketch.

– Suppose G1 and G2 are isomorphic graphs and f (resp., g) is 
a one-to-one, onto function from the vertices (resp., edges) 
of G1 onto the vertices (resp., edges) of G2. 

– Suppose further that G1 has a vertex v of degree k. 

– Use the fact that “has a vertex of degree 3” is an 
invariant to determine if the graphs G1 and G2 in 
Figure 8.6.4 are isomorphic.

19



Isomorphisms of Graphs

• Example

– Show that if k is a positive integer, “has a simple 
cycle of length k” is an invariant.
• Proof.

– exercise

– Use the fact that “has a simple cycle of length 3” is 
an invariant to determine if the graphs G1 and G2 of 
Figure 8.6.5 are isomorphic.
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Summary

• Paths and Cycles

• Hamiltonian Cycles 
and the Traveling 
Salesperson Problem

• A Shortest-Path 
Algorithm

• Representations of 
Graphs

• Isomorphisms of 
Graphs

Discrete Mathematics, 2008 Computer Science Division, KAIST 21


