Discrete Mathematics

Jong C. Park

Computer Science Division,
KAIST



Planar Graphs

GRAPH THEORY



Planar Graphs

 Definition
— A graph is planar if it can be drawn in the plane
without its edges crossing.

— If a connected, planar graph is drawn in the
plane, the plane is divided into contiguous
regions called faces. A face is characterized by
the cycle that forms its boundary.

— The equation below holds for any connected,
planar graph.

e f= e— v+ 2, where fis the # of faces, e the # of
edges, and v the # of vertices



Planar Graphs

« Examples
— the graph of the Figure 8.7.2

— Show that the graph K35 of Figure 8.7.1 is not
planar.

— Show that the graph K; is not planar.

* Note

— If a graph contains K35 (or Ky) as a subgraph, it
cannot be planar.




Planar Graphs

 Definition
— If a graph G has a vertex v of degree 2 and edges
(vry) and (V1) with v; # 1, we say that the edges
(v,1y) and (v,»,) are in series.
— A series reduction consists of deleting the vertex v

from the graph G and replacing the edges (v, 1)
and (v, 1,) by the edge (14, 1).

— The resulting graph G is said to be obtained from
G by a series reduction. By convention, G is said to
be obtainable from itself by a series reduction.

« Example

— Obtain a graph by a series reduction from the
graph G of Figure 8.7.4.



Planar Graphs

 Definition
— Graphs G; and G, are homeomorphic if G; and G,

can be reduced to isomorphic graphs by
performing a sequence of series reduction.

e Example

— Determine if the graphs G; and G, of Figure 8.7.5
are homeomorphic.



Planar Graphs

 Theorem [Kuratowski's Theorem]

— A graph Gis planar if and only if G does not
contain a subgraph homeomorphic to K5 or ;5.

e Example

— Show that the graph G of Figure 8.7.6 is not planar
by using Kuratowski's Theorem.



Planar Graphs

« Theorem [Euler's Formula for Graphs]

— If Gis a connected, planar graph with e edges, v
vertices, and ffaces, then = e— v + 2.

— Proof.
« Use induction on the number of edges.
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Introduction

 Definition
— A (free) tree 7T'is a simple graph satisfying
the following:

« If vand w are vertices in 7, there is a unique
simple path from vto w.

— A rooted tree Is a tree in which a particular
vertex Is designated the root.

« Example
— the single-elimination tournament



Introduction

 Note

— the level of a vertex vis the length of the
simple path from the root to v.

— The height of a rooted tree is the maximum
level number that occurs.



Introduction

« Examples
— the rooted tree of Figure 9.1.4
— the trees of Figure 9.1.5
— an administrative organizational chart
— Computer File Systems
— Hierarchical Definition Trees



Introduction

« Example

— Huffman Codes

* represent characters by variable-length bit
strings
 Use Figure 9.1.10 to decode the string 01010111.



Introduction

Algorithm 9.1.9: Constructing an Optimal Huffman Code

o Exa m p | e Input: A sequence of n frequencies, n = 2

Output: A rooted tree that defines an optimal Huff-

— Construct an optimal e code

huffmani f,n) {
if (m==2)1{

H u ffm a n COd e u Si n g let f1 and 2 denote the frequencies

let T be as in Figure 9.1.11

Table 9.1.2. e

let f; and f; denote the smallest frequencies

replace f; and [} in the list f by f; + f;

T' = huffman(f,n - 1)

replace a vertex in T' labeled f; + f; by the tree shown
in Figure 9.1.12 to obtain the tree T

return T

B’

S f2 fi fi
Figure 9.1.11 Figure 9.1.12



Terminology and Characterization
of Trees

 Definition
— Let 7 be a tree with root v,

— Suppose that x, y, and z are vertices in 7
and that (v, v, ... v,) Is a simple path in 7.

— Then

(@) v, is the parent of v,
) Vo .., V,1 are ancestors of v,,
C) Vv, |s a child of v
d) If xis an ancestor of ), yis a descendant of x.
e) If xand y are children of z x and y are siblings.

(b
(
(
(



Terminology and Characterization
of Trees

(f) If x has no children, xis a terminal vertex (or a leaf).

(g) If xis not a terminal vertex, xis an internal (or
branch) vertex.

(h) The subtree of 7 rooted at xis the graph with
vertex set Vand edge set £ where Vis x together
with the descendants of x and

£ ={e| eis an edge on a simple path from x to
some vertex in 4.

* Note
— A graph with no cycles is called an acyclic
graph.
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Terminology and Characterization
of Trees

 Theorem

— Let 7 be a graph with n vertices. The
following are equivalent.
(@) 7is a tree.
(b) 7is connected and acyclic.
(c) 7is connected and has n— 1 edges.
(d) 7is acyclic and has n— 1 edges.

— Proof.
e Exercise.



Spanning Trees

 Definition
— A tree Tis a spanning tree of a graph Gif T

IS a subgraph of G that contains all of the
vertices of G.

« Examples

— Find a spanning tree of the graph G of
Figure 9.3.1.

— Find an alternative spanning tree of the
graph G of Figure 9.3.1.




Spanning Trees

 Theorem

— A graph G has a spanning tree if and only if
G Is connected.

— Proof sketch.

« =»: Use the notion of a path.
« €: Use the notion of cyclicity



Spanning Trees

Algorithm 9.3.6: Breadth-First Search for a Spanning Tree

Input: A connected graph & with vertices ordered
UL, Vg Uy
Output: A spanning tree T

bfs(V,E) {
/4 V = vertices ordered vi,..., va; E = edges
// V' = vertices of spanning tree T;
// E" = edges of spanning tree T
// v is the root of the spanning tree
S/ 5 is an ordered list

S =1iw)
Vo=l
E'=@&

while (true) |
for each x = 5, in order,
for each ¥ € V — V7, in order,
if ({x, ) is an edge)
add edge (x,v) to E' and v to V'
if (no edges were added)
return T
5 = children of § ordered consistently with the
original vertex ordering

b



Spanning Trees

Algorithm 9.3.7: Depth-First Search for a Spanning Tree

Input: A connected graph & with vertices ordered
UL, V... Ty
Catput: A spanning tree T

dfs(V,E} {
/4 V' = vertices of spanning tree T
//E' = edges of spanning tree T
/4 v is the root of the spanning tree

Vo= lu}
E'=&
w =1

while (true) {
while (there is an edge (w, v) that when added to T
does not create a cycle in T) |
choose the edge (w, vg) with minimum k that when
added to T does not create acyclein T
add (w, vg) to E
add vg to V'
L = iy

¥
¥

if (w == 1)
return T
w = parent of w in T // backtrack
1

T
¥
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Spanning Trees

Algorithm 9.3.10: Solving the Four-(Oueens Problem Using

Backiracking

Input: An array row of size 4

Output: true, if there is a solution
false, if there is no solution
[If there is a solution, the kth queen is in col-
umn k, row rowik).]

four _queens(row) |
k=1//start in column 1

/. start in row 1
// since row(k) is incremented prior to use,
S set row(l) to 0
rowil) =1
while (k = 0} {
rowl(k) = row(k) + 1
// look for a legal move in column k
while (row({k) = 4 » column k, row({k) conflicts)
/7 try next row
rowi(k) = rowl(k) + 1

Algorithm 9.3.10 (continued)

if (rowik) = 4)
if (k==4)
return true
else { // next column
k=k+1
rowik) =0

}

else // backtrack to previous column
k=k-1
}
return false // no solution

®
¥
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Minimal Spanning Trees

 Definition
— Let G be a weighted graph. A minimal

spanning tree of G is a spanning tree of G
with minimum weight.

« Example

— Find two spanning trees for graph G of
Figure 9.4.1 and compare their weights.



Minimal Spanning Trees

Algorithm 9.4.3: Prim’s Algorithm

Input: A connected, weighted graph & with vertices
1,...,n and start vertex s. If (1, j} is an edge,
wii, j)is equal to the weight of (i, j); if (i, j)
is not an edge, wii, j) is equal to « (a value
greater than any actual weight).

Output: The set of edges E is a minimal spanning tree
{mst)

primi{w,n,s) {
vy = 1if vertex i has been added to mst
vy = 0if vertex i has not been added to mst
1. fori=1ton

vith =10
J/ add start vertex to mst
3. vis) =1
// begin with an empty edge set
4. E=

Algorithm 9.4.3 (continued)

'l

88 =1 on

10.

12
13.
14,

15,
16.
17.
18,
19,

e

S/ put n— 1 edges in the minimal spanning tree
fori=1ton-11
// add edge of minimum weight with one
// vertex in mst and one vertex not in mst
mMin = o2
forj=1ton
if (viy) == 1) //if jis a vertex in mst
fork=1ton
if (k) ==0nrwij k)< min) {
add _vertex = k
e=(f k)
min = wij,k)

¥
¥

/¢ put vertex and edge in mst
viadd_vertex) = 1
E=Euie}

}

return £
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Minimal Spanning Trees

 Theorem

— Prim’s Algorithm is correct; that Is, at the
termination of Algorithm 9.4.3, Tis a
minimal spanning tree.

» Kruskal's algorithm
— Sort edges.



» Terminology and
Characterization of
Trees

« Spanning Trees

« Minimal Spanning
Trees



