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GRAPH THEORY

Today’s Topics
Introduction

Paths and Cycles

Hamiltonian Cycles and the Traveling 
Salesperson Problem

A Shortest-Path Algorithm

Representations of Graphs

Isomorphisms of Graphs

Planar Graphs
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Planar Graphs

• Definition
– A graph is planar if it can be drawn in the plane 

without its edges crossing.

– If a connected, planar graph is drawn in the 
plane, the plane is divided into contiguous 
regions called faces. A face is characterized by 
the cycle that forms its boundary.

– The equation below holds for any connected, 
planar graph.
• f = e – v + 2, where f is the # of faces, e the # of 

edges, and v the # of vertices
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Planar Graphs

• Examples

– the graph of the Figure 8.7.2

– Show that the graph K3,3 of Figure 8.7.1 is not 
planar.

– Show that the graph K5 is not planar.

• Note

– If a graph contains K3,3 (or K5) as a subgraph, it 
cannot be planar.
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Planar Graphs

• Definition
– If a graph G has a vertex v of degree 2 and edges 

(v,v1) and (v,v2) with v1  v2, we say that the edges 
(v,v1) and (v,v2) are in series. 

– A series reduction consists of deleting the vertex v 
from the graph G and replacing the edges (v,v1) 
and (v,v2) by the edge (v1,v2). 

– The resulting graph G’ is said to be obtained from 
G by a series reduction. By convention, G is said to 
be obtainable from itself by a series reduction.

• Example
– Obtain a graph by a series reduction from the 

graph G of Figure 8.7.4.
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Planar Graphs

• Definition

– Graphs G1 and G2 are homeomorphic if G1 and G2 

can be reduced to isomorphic graphs by 
performing a sequence of series reduction.

• Example

– Determine if the graphs G1 and G2 of Figure 8.7.5 
are homeomorphic.
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Planar Graphs

• Theorem [Kuratowski’s Theorem]

– A graph G is planar if and only if G does not 
contain a subgraph homeomorphic to K5 or K3,3.

• Example

– Show that the graph G of Figure 8.7.6 is not planar 
by using Kuratowski’s Theorem.
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Planar Graphs

• Theorem [Euler’s Formula for Graphs]

– If G is a connected, planar graph with e edges, v
vertices, and f faces, then f = e – v + 2.

– Proof.
• Use induction on the number of edges.
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TREES

Today’s Topics
Introduction

Terminology and Characterization of Trees

Spanning Trees

Minimal Spanning Trees

Binary Trees

Tree Traversals

Decision Trees and the Minimum Time for Sorting

Isomorphisms of Trees
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Introduction

• Definition

– A (free) tree T is a simple graph satisfying 
the following:

• If v and w are vertices in T, there is a unique 
simple path from v to w.

– A rooted tree is a tree in which a particular 
vertex is designated the root.

• Example

– the single-elimination tournament
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Introduction

• Note

– the level of a vertex v is the length of the 
simple path from the root to v.

– The height of a rooted tree is the maximum 
level number that occurs.
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Introduction

• Examples

– the rooted tree of Figure 9.1.4

– the trees of Figure 9.1.5

– an administrative organizational chart

– Computer File Systems

– Hierarchical Definition Trees
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Introduction

• Example

– Huffman Codes

• represent characters by variable-length bit 
strings

• Use Figure 9.1.10 to decode the string 01010111. 
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Introduction

• Example

– Construct an optimal 

Huffman code using 

Table 9.1.2.
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Terminology and Characterization 
of Trees

• Definition
– Let T be a tree with root v0. 

– Suppose that x, y, and z are vertices in T
and that (v0, v1, ..., vn) is a simple path in T. 

– Then
(a) vn-1 is the parent of vn.

(b) v0, ..., vn-1 are ancestors of vn.

(c) vn is a child of vn-1

(d) If x is an ancestor of y, y is a descendant of x.

(e) If x and y are children of z, x and y are siblings.
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Terminology and Characterization 
of Trees

(f) If x has no children, x is a terminal vertex (or a leaf).

(g) If x is not a terminal vertex, x is an internal (or 
branch) vertex.

(h) The subtree of T rooted at x is the graph with 
vertex set V and edge set E, where V is x together 
with the descendants of x and 

E = {e | e is an edge on a simple path from x to 
some vertex in V}.

• Note

– A graph with no cycles is called an acyclic 
graph.
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Terminology and Characterization 
of Trees

• Theorem

– Let T be a graph with n vertices. The 
following are equivalent. 

(a) T is a tree.

(b) T is connected and acyclic.

(c) T is connected and has n – 1 edges.

(d) T is acyclic and has n – 1 edges.

– Proof.

• Exercise.
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Spanning Trees

• Definition

– A tree T is a spanning tree of a graph G if T
is a subgraph of G that contains all of the 
vertices of G.

• Examples

– Find a spanning tree of the graph G of 
Figure 9.3.1.

– Find an alternative spanning tree of the 
graph G of Figure 9.3.1.
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Spanning Trees

• Theorem

– A graph G has a spanning tree if and only if 
G is connected.

– Proof sketch.

• : Use the notion of a path.

• : Use the notion of cyclicity
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Spanning Trees



21

Spanning Trees
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Spanning Trees
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Minimal Spanning Trees

• Definition

– Let G be a weighted graph. A minimal 
spanning tree of G is a spanning tree of G
with minimum weight.

• Example

– Find two spanning trees for graph G of 
Figure 9.4.1 and compare their weights. 
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Minimal Spanning Trees
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Minimal Spanning Trees

• Theorem

– Prim’s Algorithm is correct; that is, at the 
termination of Algorithm 9.4.3, T is a 
minimal spanning tree.

• Kruskal’s algorithm

– Sort edges. 



Summary

• Terminology and 
Characterization of 
Trees

• Spanning Trees
• Minimal Spanning 

Trees
• Binary Trees
• Tree Traversals
• Decision Trees and the 

Minimum Time for 
Sorting

• Isomorphisms of Trees
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