Today’s Topics
Introduction
Terminology and Characterization of Trees
Spanning Trees
Minimal Spanning Trees
Binary Trees
Tree Traversals
Decision Trees and the Minimum Time for Sorting
Isomorphisms of Trees

TREES
Binary Trees

• Definition
 – A binary tree is a rooted tree in which each vertex has either no children, one child, or two children.
 – If a vertex has a child, that child is designated as either a left child or a right child (but not both).
 – If a vertex has two children, one child is designated a left child and the other child is designated a right child.

• Example
 – the binary tree of Figure 9.5.1
 – a tree that defines a Huffman code
Binary Trees

• Note
 – A full binary tree is a binary tree in which each vertex has either two children or zero children.

• Theorem
 – If T is a full binary tree with i internal vertices, then T has $i + 1$ terminal vertices and $2i + 1$ total vertices.

• Example
 – a single-elimination tournament
Binary Trees

• Theorem
 – If a binary tree of height h has t terminal vertices, then $\lg t \leq h$.
 – Proof sketch.
 • Prove the equivalent inequality $t \leq 2^h$ by induction on h.
 • Basis: $h = 0$.

• Example
 – the binary tree of Figure 9.5.3
Binary Trees

• Definition
 – A binary search tree is a binary tree T in which data are associated with the vertices. The data are arranged so that, for each vertex v in T, each data item in the left subtree of v is less than the data item in v, and each data item in the right subtree of v is greater than the data item in v.

• Example
 – Construct a binary search tree from the following words.
 • OLD PROGRAMMERS NEVER DIE
 • THEY JUST LOSE THEIR MEMORIES
Binary Trees

Algorithm 9.5.10: Constructing a Binary Search Tree

Input: A sequence w_1, \ldots, w_n of distinct words and the length n of the sequence
Output: A binary search tree T

\begin{verbatim}
make_bin_search_tree(w, n) {
 let T be the tree with one vertex, root
 store w_1 in root
 for $i = 2$ to n {
 $v = root$
 search = true // find spot for w_i
 while (search) {
 $s = \text{word in } v$
 if ($w_i < s$)
 if (v has no left child) {
 add a left child l to v
 store w_i in l
 search = false // end search
 }
 else
 $v = \text{left child of } v$
 else
 search = false // end search
 }
 }
}
\end{verbatim}
Tree Traversals

• Preorder Traversal

Algorithm 9.6.1: Preorder Traversal

Input: \(PT \), the root of a binary tree
Output: Dependent on how “process” is interpreted in line 3

\[
\text{preorder}(PT) \{ \\
1. \quad \text{if } (PT \text{ is empty}) \\
2. \quad \text{return} \\
3. \quad \text{process } PT \\
4. \quad l = \text{left child of } PT \\
5. \quad \text{preorder}(l) \\
6. \quad r = \text{right child of } PT \\
7. \quad \text{preorder}(r) \\
\}
\]
Tree Traversals

• Inorder Traversal

Algorithm 9.6.3: Inorder Traversal

Input: PT, the root of a binary tree
Output: Dependent on how “process” is interpreted in line 5

$$inorder(PT) \{$$
1. if (PT is empty)
2. return
3. $l = \text{left child of } PT$
4. $inorder(l)$
5. process PT
6. $r = \text{right child of } PT$
7. $inorder(r)$
$$}$$
Tree Traversals

• Postorder Traversal

Algorithm 9.6.5: Postorder Traversal

Input: \(PT \), the root of a binary tree
Output: Dependent on how “process” is interpreted in line 7

\[
\text{postorder}(PT) \{
1. \quad \text{if (PT is empty)}
2. \quad \text{return}
3. \quad l = \text{left child of } PT
4. \quad \text{postorder}(l)
5. \quad r = \text{right child of } PT
6. \quad \text{postorder}(r)
7. \quad \text{process } PT
\}
\]
Decision Trees and the Minimum Time for Sorting

• Examples
 – A decision tree for restaurants
 – Five-Coins Puzzle
 • Five coins are identical in appearance, but one coin is either heavier or lighter than the others, which all weigh the same.
 • The problem is to identify the bad coin and determine whether it is heavier or lighter than the others using only a pan balance, which compares the weights of two sets of coins.
Decision Trees and the Minimum Time for Sorting

• Example
 • A decision tree for sorting three elements

• Theorem
 – If \(f(n) \) is the number of comparisons needed to sort \(n \) items in the worst case by a sorting algorithm, then \(f(n) = \Omega(n \lg n) \).
Isomorphisms of Trees

• Example
 – Are the following pair of trees isomorphic?
 • the tree T_1 of Figures 9.8.1 and the tree T_2 of Figure 9.8.2
 • the trees T_1 and T_2 of Figure 9.8.3

• Theorem
 – There are three nonisomorphic trees with five vertices.
 – Proof.
 • Use an argument on the maximum degree on each vertex.
Isomorphisms of Trees

• Definition
 – Let T_1 be a rooted tree with root r_1 and let T_2 be a rooted tree with root r_2. The rooted trees T_1 and T_2 are isomorphic if there is a one-to-one, onto function f from the vertex set of T_1 to the vertex set of T_2 satisfying the following:
 (a) Vertices v_i and v_j are adjacent in T_1 if and only if the vertices $f(v_i)$ and $f(v_j)$ are adjacent in T_2.
 (b) $f(r_1) = r_2$.
 – We call the function f an isomorphism.

• Examples
 – Are the following pair of trees isomorphic?
 • the rooted trees of Figure 9.8.7
 • the rooted trees of Figure 9.8.8: isomorphic only as free trees
Isomorphisms of Trees

• Theorem
 – There are four nonisomorphic rooted trees with four vertices. These four rooted trees are shown in Figure 9.8.9.
 – Proof.
 • Use an argument on the maximum degree of each vertex.
Isomorphisms of Trees

• Definition
 – Let T_1 be a binary tree with root r_1 and let T_2 be a binary tree with root r_2. The binary trees T_1 and T_2 are isomorphic if there is a one-to-one, onto function f from the vertex set of T_1 to the vertex set of T_2 satisfying the following:
 (a) Vertices v_i and v_j are adjacent in T_1 if and only if the vertices $f(v_i)$ and $f(v_j)$ are adjacent in T_2.
 (b) $f(r_1) = r_2$.
 (c) v is a left child of w in T_1 if and only if $f(v)$ is a left child of $f(w)$ in T_2.
 (d) v is a right child of w in T_1 if and only if $f(v)$ is a right child of $f(w)$ in T_2.
Isomorphisms of Trees

• Examples
 – Are the following pair of trees isomorphic?
 • the binary trees of Figure 9.8.10
 • the binary trees of Figure 9.8.11
Isomorphisms of Trees

• Theorem
 – There are five nonisomorphic binary trees with three vertices. These five binary trees are shown in Figure 9.8.12.

• Theorem
 – There are C_n nonisomorphic binary trees with n vertices where $C_n = C(2n,n)/(n+1)$ is the nth Catalan number.
Isomorphisms of Trees

Algorithm 9.8.13: Testing Whether Two Binary Trees Are Isomorphic

Input: The roots \(r_1 \) and \(r_2 \) of two binary trees. (If the first tree is empty, \(r_1 \) has the special value \(\text{null} \). If the second tree is empty, \(r_2 \) has the special value \(\text{null} \).)

Output: true, if the trees are isomorphic
false, if the trees are not isomorphic

\[
\text{bin_tree_isom}(r_1, r_2) \{
1. \quad \text{if } (r_1 == \text{null} \land r_2 == \text{null})
2. \quad \text{return true}
3. \quad \text{// now one or both of } r_1 \text{ or } r_2 \text{ is not } \text{null}
4. \quad \text{if } (r_1 == \text{null} \lor r_2 == \text{null})
5. \quad \text{return false}
6. \quad \text{// now neither of } r_1 \text{ or } r_2 \text{ is } \text{null}
7. \quad \text{lc}_r_1 = \text{left child of } r_1
8. \quad \text{lc}_r_2 = \text{left child of } r_2
9. \quad \text{rc}_r_1 = \text{right child of } r_1
10. \quad \text{rc}_r_2 = \text{right child of } r_2
11. \quad \text{return } \text{bin_tree_isom} (\text{lc}_r_1, \text{lc}_r_2) \land \text{bin_tree_isom} (\text{rc}_r_1, \text{rc}_r_2)
\}
\]
Summary

• Terminology and Characterization of Trees
• Spanning Trees
• Minimal Spanning Trees
• Binary Trees
• Tree Traversals
• Decision Trees and the Minimum Time for Sorting
• Isomorphisms of Trees