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Binary Trees

• Definition
– A binary tree is a rooted tree in which each vertex 

has either no children, one child, or two children. 

– If a vertex has a child, that child is designated as 
either a left child or a right child (but not both). 

– If a vertex has two children, one child is designated 
a left child and the other child is designated a right 
child.

• Example
– the binary tree of Figure 9.5.1

– a tree that defines a Huffman code
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Binary Trees

• Note

– A full binary tree is a binary tree in which each 
vertex has either two children or zero children.

• Theorem

– If T is a full binary tree with i internal vertices, 
then T has i + 1 terminal vertices and 2i + 1 
total vertices.

• Example

– a single-elimination tournament
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Binary Trees

• Theorem

– If a binary tree of height h has t terminal 
vertices, then lg t  h. 

– Proof sketch.

• Prove the equivalent inequality t ≤ 2h by 
induction on h.

• Basis: h = 0. 

• Example

– the binary tree of Figure 9.5.3
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Binary Trees

• Definition
– A binary search tree is a binary tree T in which data 

are associated with the vertices. The data are 
arranged so that, for each vertex v in T, each data 
item in the left subtree of v is less than the data 
item in v, and each data item in the right subtree of 
v is greater than the data item in v.

• Example
– Construct a binary search tree from the following 

words.
• OLD PROGRAMMERS NEVER DIE

THEY JUST LOSE THEIR MEMORIES
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Binary Trees
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Tree Traversals

• Preorder Traversal
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Tree Traversals

• Inorder Traversal
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Tree Traversals

• Postorder Traversal
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Decision Trees and the Minimum 
Time for Sorting

• Examples

– A decision tree for restaurants

– Five-Coins Puzzle

• Five coins are identical in appearance, but one 
coin is either heavier or lighter than the others, 
which all weigh the same.

• The problem is to identify the bad coin and 
determine whether it is heavier or lighter than 
the others using only a pan balance, which 
compares the weights of two sets of coins.
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Decision Trees and the Minimum 
Time for Sorting

• Example
• A decision tree for sorting three elements

• Theorem

– If f(n) is the number of comparisons needed 
to sort n items in the worst case by a 
sorting algorithm, then f(n) = (n lg n).
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Isomorphisms of Trees

• Example
– Are the following pair of trees isomorphic?

• the tree T1 of Figures 9.8.1 and the tree T2 of Figure 
9.8.2

• the trees T1 and T2 of Figure 9.8.3

• Theorem
– There are three nonisomorphic trees with five 

vertices.

– Proof.
• Use an argument on the maximum degree on each 

vertex.
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Isomorphisms of Trees

• Definition
– Let T1 be a rooted tree with root r1 and let T2 be a 

rooted tree with root r2. The rooted trees T1 and T2
are isomorphic if there is a one-to-one, onto 
function f from the vertex set of T1 to the vertex set 
of T2 satisfying the following:
(a) Vertices vi and vj are adjacent in T1 if and only if the 

vertices f(vi) and f(vj) are adjacent in T2. 
(b) f(r1) = r2.

– We call the function f an isomorphism.
• Examples

– Are the following pair of trees isomorphic?
• the rooted trees of Figure 9.8.7
• the rooted trees of Figure 9.8.8: isomorphic only as free 

trees
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Isomorphisms of Trees

• Theorem

– There are four nonisomorphic rooted trees 
with four vertices.  These four rooted trees 
are shown in Figure 9.8.9.

– Proof.

• Use an argument on the maximum degree of 
each vertex.
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Isomorphisms of Trees

• Definition
– Let T1 be a binary tree with root r1 and let T2 be 

a binary tree with root r2. The binary trees T1
and T2 are isomorphic if there is a one-to-one, 
onto function f from the vertex set of T1 to the 
vertex set of T2 satisfying the following:
(a) Vertices vi and vj are adjacent in T1 if and only if the 

vertices f(vi ) and f(vj) are adjacent in T2.
(b) f(r1) = r2.
(c) v is a left child of w in T1 if and only if f(v) is a left 

child of f(w) in T2.
(d) v is a right child of w in T1 if and only if f(v) is a 

right child of f(w) in T2. 
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Isomorphisms of Trees

• Examples

– Are the following pair of trees isomorphic?

• the binary trees of Figure 9.8.10

• the binary trees of Figure 9.8.11
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Isomorphisms of Trees

• Theorem

– There are five nonisomorphic binary trees 
with three vertices. These five binary trees 
are shown in Figure 9.8.12.

• Theorem

– There are Cn nonisomorphic binary trees 
with n vertices where Cn = C(2n,n)/(n+1) is 
the nth Catalan number.
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Isomorphisms of Trees



Summary

• Terminology and 
Characterization of 
Trees

• Spanning Trees
• Minimal Spanning 

Trees
• Binary Trees
• Tree Traversals
• Decision Trees and the 

Minimum Time for 
Sorting

• Isomorphisms of Trees
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