Discrete Mathematics CS204: Spring, 2008

Jong C. Park Computer Science Department KAIST

Today's Topics

Introduction A Maximal Flow Algorithm The Max Flow, Min Cut Theorem Matching

NETWORK MODELS

- Definition
 - A transport network (or more simply network) is a simple, weighted, directed graph satisfying:
 - (a) A designated vertex, the source, has no incoming edges.
 - (b) A designated vertex, the sink, has no outgoing edges.

(c) The weight *C_{ij}* of the directed edge (*i*, *j*), called the capacity of (*i*, *j*), is a nonnegative number.

• Example

- the graph of Figure 10.1

- Definition
 - Let *G* be a transport network. Let C_{ij} denote the capacity of the directed edge (i, j). A flow *F* in *G* assigns each directed edge (i, j) a nonnegative number F_{ij} such that:
 - (a) $F_{ij} \leq C_{ij}$
 - (b) For each vertex *j*, which is neither the source nor the sink,
 - $\Sigma_i F_{ij} = \Sigma_i F_{ji}$ (* property of the conservation of flow)
 - In a sum such as (*), unless specified otherwise, the sum is assumed to be taken over all vertices *i*. Also, if (*i*, *j*) is not an edge, we set $F_{ij} = 0$.
 - We call F_{ij} the flow in edge (i, j). For any vertex j, we call $\Sigma_i F_{ij}$ the flow into j and we call $\Sigma_i F_{ji}$ the flow out of j.

- Example
 - Sample flow
 - $F_{ab} = 2$, $F_{bc} = 2$, $F_{cz} = 3$, $F_{ad} = 3$, $F_{dc} = 1$, $F_{de} = 2$, $F_{ez} = 2$

- Theorem
 - Given a flow F in a network, the flow out of the source a equals the flow into the sink z, that is,

$$\Sigma_{i} F_{ai} = \Sigma_{i} F_{iz}$$

- Proof.
 - Let V be the set of vertices.
 - We have

 $\Sigma_{j \in V} (\Sigma_{i \in V} F_{ij}) = \Sigma_{j \in V} (\Sigma_{i \in V} F_{ji}),$ since each double sum is $\Sigma_{e \in E} F_{e'}$ where *E* is the set of edges.

• Now,
$$0 = \sum_{j \in V} (\sum_{i \in V} F_{ij} - \sum_{i \in V} F_{ji})$$
$$= (\sum_{i \in V} F_{iz} - \sum_{i \in V} F_{zi}) + (\sum_{i \in V} F_{ia} - \sum_{i \in V} F_{ai}) + \sum_{j \in V, j \neq a, z} (\sum_{i \in V} F_{ij} - \sum_{i \in V} F_{ji})$$
$$= \sum_{i \in V} F_{iz} - \sum_{i \in V} F_{ai}$$

since $F_{zi} = 0 = F_{ia'}$ for all $i \in V$, and (by definition) $\sum_{i \in V} F_{ij} - \sum_{i \in V} F_{ji} = 0$ if $j \in V - \{a, z\}$.

• Definition

- Let *F* be a flow in a network *G*. The value $\Sigma_i F_{ai} = \Sigma_i F_{iz}$ is called the value of the flow *F*.

- Examples
 - the value of the flow in the network of Figure 10.1.2
 - A Pumping Network
 - Figure 10.1.3
 - supersource, supersink
 - A Traffic Flow Network

- Note
 - If G is a transport network, a maximal flow in G is a flow with maximal value.
 - Consider the edges of G to be undirected and let

 $P = (V_0, V_1, ..., V_n), V_0 = a, V_n = Z$

be a path from *a* to *z* in this undirected graph.

• If an edge *e* in *P* is directed from *v*_{*i*-1} to *v*_{*i*} we say that

e is properly oriented (with respect to *P*); otherwise, we say that

e is improperly oriented (with respect to *P*).

- Example
 - the path from a to z in Figure 10.2.2
 - after increasing the flow by 1 (Figure 10.2.3)
 - the four possible orientations of the edges incident on x
 - Figure 10.2.4
- Example
 - the path from a to z in Figure 10.2.5
 - after increasing the flow by 1 (Figure 10.2.6)

- Theorem
 - Let P be a path from a to z in a network G satisfying the following conditions:
 - (a) For each properly oriented edge (*i*, *j*) in *P*, $F_{ij} < C_{ji}$
 - (b) For each improperly oriented edge (*i*, *j*) in *P*, 0 < F_{ij}
 - Let $\Delta = \min X$, where X consists of the number $C_{ij} - F_{ij}$ for properly oriented edges (i, j) in P, and F_{ij} for improperly oriented edges (i, j) in P.

– Define

 $F_{ij}^* = F_{ij}$ if (i, j) is not in P, $F_{ij} + \Delta$ if (i, j) is properly oriented in P, and

 $F_{ij} - \Delta$ if (i, j) is not properly oriented in *P*.

– Then F^* is a flow whose value is Δ greater than the value of F.

- Procedure
 - Start with a flow (e.g., the flow in which the flow in each edge is 0).
 - Search for a path satisfying the conditions of the earlier theorem.
 - If no such path exists, stop; the flow is maximal.
 - Increase the flow through the path by Δ , where Δ is defined as in the earlier theorem, and go to line 2.

Algorithm 10.2.4: Finding a Maximal Flow in a Network

Input: A network with source a, sink z, capacity C, vertices $a = v_0, \ldots, v_n = z$, and nOutput: A maximal flow F $max_{flow}(a, z, C, v, n)$ { // v's label is (predecessor(v), val(v))// start with zero flow for each edge (i, j)1. 2. $F_{ij} = 0$ 3. while (true) { // remove all labels 4. for i = 0 to n { 5. $predecessor(v_i) = null$ 6. $val(v_i) = null$ } 7. // label a predecessor(a) = -8. $val(a) = \infty$ 9. // U is the set of unexamined, labeled vertices $U = \{a\}$ 10.

Algorithm 10.2.4 (continued)

	// continue until z is labeled
11.	while $(val(z) == null)$ {
12.	if $(U == \emptyset) //$ flow is maximal
13.	return F
14.	choose v in U
15.	$U = U - \{v\}$
16.	$\Delta = val(v)$
17.	for each edge (v, w) with $val(w) == null$
18.	if $(F_{vw} < C_{vw})$ {
19.	predecessor(w) = v
20.	$val(w) = min\{\Delta, C_{vw} - F_{vw}\}$
21.	$U = U \cup \{w\}$
22.	}
23.	for each edge (w, v) with $val(w) == null$
24.	if $(F_{wv} > 0)$ {
25.	predecessor(w) = v
26.	$val(w) = \min\{\Delta, F_{wv}\}$
27.	$U = U \cup \{w\}$
28.	}
29.	$} // end while (val(z) == null) loop$

Algorithm 10.2.4 (continued)

	// find path P from a to z on which to revise flow
30.	$w_0 = z$
31.	k = 0
32.	while $(w_k \neg = a)$ {
33.	$w_{k+1} = predecessor(w_k)$
34.	k = k + 1
35.	}
36.	$P = (\boldsymbol{w}_{k+1}, \boldsymbol{w}_k, \dots, \boldsymbol{w}_1, \boldsymbol{w}_0)$
37.	$\Delta = val(z)$
38.	for $i = 1$ to $k + 1$ {
39.	$e = (w_i, w_{i-1})$
40.	if (e is properly oriented in P)
41.	$F_e = F_e + \Delta$
42.	else
43.	$F_e = F_e - \Delta$
44.	}
45.	} // end while (true) loop
	}

Summary

- Introduction
- A Maximal Flow Algorithm
- The Max Flow, Min Cut Theorem
- Matching