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Introduction

 Definition
— A transport network (or more simply network) is
a simple, weighted, directed graph satisfying:
(a) A designated vertex, the source, has no incoming
edges.

(b) A designated vertex, the sink, has no outgoing
edges.

(c) The weight C; of the directed edge (; j), called the
capacity of (4 j), is a nonnegative number.

« Example
— the graph of Figure 10.1



Introduction

* Definition
— Let G be a transport network. Let C; denote the
capacity of the directed edge (; )). A flow Fin G
assigns each directed edge (/ /) a nonnegative
number Fy such that;
(a) F; < C;
(b) For each vertex j which is neither the source nor the sink,
XF; = ZF; (* property of the conservation of flow)
— In a sum such as (*), unless specified otherwise, the sum is

assumed to be taken over all vertices /. Also, if (/ j) is not an
edge, we set £; = 0.

— We call F;the flow in edge ( )). For any vertex j we
C?II.Z,-FJtﬁe flow into yand we call £7; the flow out
of J.



Introduction

« Example

— Sample flow
* Fab: 2' FbC: 2' Fcz: 3' F,

ad:3'
FdC:]" Fde=2, FGZ:Z
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« Theorem

— Given a flow Fin a network, the flow out of the
source g equals the flow into the sink z that is,

/" al ! "Iz
— Proof.
« Let V' be the set of vertices.
 We have

Zje %Z/e VF//) = Zje |X2/e|/Fj/)'
since each double sum is X__; F, where £is the set of
edges.

eckE
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*Now, 0 =% [ Fy- 2,-€|/ Fi
= QievFiz - ZievFa
ZievFia = ZievFa
2 I//;-taz(z/'eI/F j 2/el/ //)
=X F,-Z . F,;
since F,,=0 = F, forall /e V, and (by definition)

/a

/‘€|/F-/‘/' /EVF — O |f_/ e I/_ {a,Z}
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e Definition
— Let Fbe a flow in a network G. The value
z/'Fa/' = Z/'F/'z

Is called the value of the flow £

« Examples

— the value of the flow in the network of Figure
10.1.2

— A Pumping Network
 Figure 10.1.3
* supersource, supersink

— A Traffic Flow Network



A Maximal Flow Algorithm

* Note

—If Gis a transport network, a maximal flow in G
is a flow with maximal value.

— IConsider the edges of G to be undirected and
et

P=( W ..V) =4 V,= Z
be a path from ato zin this undirected graph.

. ILan edge ein Pis directed from v;; to v; we say
that

e is properly oriented (with respect to A);
otherwise, we say that
e is improperly oriented (with respect to A.



A Maximal Flow Algorithm

« Example
— the path from ato zin Figure 10.2.2
— after increasing the flow by 1 (Figure 10.2.3)

— the four possible orientations of the edges
iIncident on x

* Figure 10.2.4

« Example
— the path from ato zin Figure 10.2.5
— after increasing the flow by 1 (Figure 10.2.6)



A Maximal Flow Algorithm

« Theorem

— Let Pbe a path from ato zin a network G
satisfying the following conditions:

(a) For each properly oriented edge (; ) in £ £
< Cj

(b) For each improperly oriented edge (/, ) in £ 0O
< F,
y.

— Let A = min X, where X consists of the
number C;— F; for properly oriented edges
(4, )in P and /i' for improperly oriented
edges (/ J) In 4



A Maximal Flow Algorithm

— Define
F ;= F;if (j j)is notiin A
F; + A if (i) is properly oriented in 7,
and
b F; - Aif (jj) is not properly oriented
in P

—Then F is a flow whose value is A greater
than the value of £



A Maximal Flow Algorithm

 Procedure

— Start with a flow (e.g., the flow in which the
flow in each edge is 0).

— Search for a path satisfying the conditions
of the earlier theorem.
« If no such path exists, stop; the flow is maximal.
— Increase the flow through the path by A,

where A is defined as in the earlier theorem,
and go to line 2.



A Maximal Flow Algorithm

Algorithm 10.2.4: Finding a Maximal Flow in a Network

Input: A network with source a, sink z, capacity C,
vertices @ = vg,..., Uy = 2, and »n

Output: A maximal flow F

max_flowia,z,C,v,n) {
/4 v's label is (predecessor{v), valiv))
/7 start with zero flow
1. for each edge (i, j)

2. Fij=0
3. while (true) |
// remove all labels
4. fori=0ton{
3. predecessor{v;) = null
. valiv;) = null
7. }
// label a
H. predecessor(a) = —
9. vialia) = oo
A/ 17 is the set of unexamined, labeled vertices
10. U=1{a}l

14



A Maximal Flow Algorithm

Algorithm 10.2.4 (continued)

11.
12,
13.
14.
15.
16.
17.
18.
19.
20
21.
22,
23.
24.
25.
26.
27,
28.
29.

// continue until z is labeled
while {val(z) == null) |
if (7 == &) // flow is maximal
return F
choose v in [J
U=0U-{v}
A = valiv)
for each edge (v, w) with val(w ) == null
if (Fyw < Cyw) {
predecessoriw) = v
vallw) = min{A, Cow — Frw!
U=0Uu{w!}
t
for each edge {(w,v) with val{w) == null
if (Fp = 00§
predecessoriw) = v
vallw) = min{A, Fyp!}
U=0Uu{w!}
t
1/ end while (valiz) == null) loop

15



A Maximal Flow Algorithm

Algorithm 10.2.4 (continued)

/¢ find path P from a to z on which to revise flow

30, Wy = 2

31. k=10

32. while (wy, = a) {

33. Wy, = predecessor{uy)
34. k=k+1

45, i

36. P={wy, Wegy..., Wy, wnl
37. A =wvallz)

38. fori=1tok+ 11

39. @ = (wi, wi-1)

40. if ie is properly oriented in F)
41. Fo=F. + A

42, else

43. F.=F,— A

44, i

45. t // end while (true) loop



The Max Flow, Min Cut Theorem

 Definition
— A cut (P ~P) in G consists of a set P of
vertices and the complement ~P of A with a
e Pand z e ~P.
« Examples
— the network of Figure 10.3.1
e P={ag b dtand ~P={c e 1
— the network of Figure 10.3.2



The Max Flow, Min Cut Theorem

 Definition
— The capacity of the cut (P, ~A is the
number
AF~P =2 Ze.pCj
« Examples
— the capacity of the cut of Figure 10.3.1
* Cpet (e =38

— the capacity of the cut of Figure 10.3.2
* Cbc+ Ca’c+ Ca’e: 6



The Max Flow, Min Cut Theorem

 Theorem

— Let Fbe a flow in Gand let (P ~P) be a cut
In G. Then the capacity of (P, ~P) is greater
than or equal to the value of £ that is,

Zl'e P2 ‘Je ~PCJ 2 Z/Fa/"
— The notation X;means the sum over all
vertices /.

— Proof.
e Exercise.



The Max Flow, Min Cut Theorem

« Example

— the value of the flow of Figure 10.3.1
* 5
— the capacity of the cut of Figure 10.3.1
* 3
* Note

— A minimal cut is a cut having minimum
capacity.



The Max Flow, Min Cut Theorem

« Theorem (Max Flow, Min Cut Theorem)

— Let Fbe a flow in Gand let (P ~P) be a cutin
G. If equality holds in the previous theorem,
then the flow is maximal and the cut is minimal.
Moreover, equality holds in the the previous
theorem if and only if

@ £ = C”-for /e Pje ~Pand
(b) Fi=0 forre ~P je P

— Proof.
* Exercise.

« Example
— the flow of Figure 10.3.2



The Max Flow, Min Cut Theorem

 Theorem

— At termination, the algorithm of finding a
maximal flow in a network produces a
maximal flow. Moreover, if P (respectively,
~P) is the set of labeled (respectively,
unlabeled) vertices at the termination of the

algorithm, the cut (P, ~P) i1s minimal.



Matching

« Example
— Suppose that four persons A B C, and D apply
for five jobs A4, 4, 4, J, and .

— Suppose that applicant A is qualified for jobs J,
and J; applicant B is qualified for jobs 4 and ;
applicant Cis qualified for jobs 4, A4, J, and ;
and applicant Dis qualified for jobs 4 and k.

— Suppose finally that each job takes only one
person.

— Is it possible to find a job for each applicant?



Matching

Definition
— Let G be a directed, bipartite graph with disjoint
vertex sets Vand W in which the edges are

directed from vertices in /to vertices in W.
(Any vertex in Gis either Vor in W)

— A matching for G'is a set of edges £ with no
vertices In common.

— A maximal matching for Gis a matching £in
which £ contains the maximum number of
edges.

— A complete matching for Gis a matching £
having the prowrty that if ve V, then (vw) € £
for some w e

24



Matching

« Examples

— the matching for the graph of Figure 10.4.2
— A Matching Network (Figure 10.4.3)



Matching

« Theorem

— Let G be a directed, bipartite graph with disjoint
vertex sets IVand W in which the edges are
directed from vertices in V/'to vertices in W.
(Any vertex in Gis either in VVor in W)

(a) A flow in the matching network gives a matching in
G. The vertex v € VVis matched with the vertex w e
W if and only if the flow in edge (v, w) is 1.

(b) A maximal flow corresponds to a maximal matching.

(c) A flow whose value is | corresponds to a complete
matching.



Matching

« Example

— the matching of Figure 10.4.1 as a flow in
Figure 10.4.3



Matching

 Note

—If S € V for a bipartite graph G with vertex
sets V. and W, we let

RS)={we W|veSand(vw)is
an edge in G}.

— Suppose that G has a complete matching. If
S € V, we must have

S| < [RS)|.




Matching

« Theorem (Hall's Marriage Theorem)

— Let G be a directed, bipartite graph with disjoint
vertex sets Vand W in which the edges are
directed from vertices in V'to vertices in W. (Any
vertex in G is either in Vor in W)

— There exists a complete matching in G if and only if
|5 < |R(S)| forall Sc V
where

RS = {WeG}W| ve Sand (v, w) is an edge
in G}

— Proof.
e Exercise.



Matching

« Examples
— the graph of Figure 10.4.1
— computers and disk drives
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