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Combinatorial Circuits

• Definition
– An AND gate receives inputs x1 and x2, where x1

and x2 are bits, and produces output denoted x1
 x2, where x1  x2 = 1 if x1 = 1 and x2 = 1, 0 
otherwise.

– An OR gate receives inputs x1 and x2, where x1
and x2 are bits, and produces output denoted x1
 x2, where x1  x2 = 1 if x1 = 1 or x2 = 1, 0 
otherwise.

– A NOT gate (or inverter) receive input x, where 
x is a bit, and produces output denoted ~x, 
where ~x = 1 if x = 1, 0 if x = 1.
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Combinatorial Circuits

• Note
– The logic table of a combinatorial circuit lists all 

possible inputs together with the resulting 
outputs.

• Examples
– logic tables for the basic AND, OR, and NOT 

circuits
– the combinatorial circuit in Figure 11.1.4
– the non-combinatorial circuit in Figure 11.1.6
– the interconnected combinatorial circuit in 

Figure 11.1.7
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Combinatorial Circuits

• Definition
– Boolean expressions in the symbols x1, ..., xn

are defined recursively as follows.
• 0, 1, x1, ..., xn are Boolean expressions.

• If X1 and X2 are Boolean expressions, then (a) (X1), 
(b) ~X1, (c) X1  X2, (d) X1  X2 are Boolean 
expressions.

– If X is a Boolean expression in the symbols 
x1, ..., xn, we sometimes write X = X(x1, ..., xn).

– Either symbol x or ~x is called a literal.
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Combinatorial Circuits

• Examples

– Computing the value of a Boolean 
expression

– Finding the combinatorial circuit 
corresponding to the Boolean expression (x1

 (~x2  x3 ))  x2



7

Properties of Combinatorial 
Circuits

• Theorem
– If , , and ~ are as in the previous definitions, 

then the following properties hold, where Z2 = 
{0, 1}. 
(a) Associative laws

– (a  b )  c = a  (b  c)
– (a  b)  c = a  (b  c) for all a, b, c  Z2.

(b) Commutative laws
– a  b = b  a
– a  b = b  a, for all a, b  Z2.

(c) Distributive laws
– a  (b  c) = (a  b)  (a  c)
– a  (b  c) = (a  b)  (a  c) for all a, b, c  Z2.
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Properties of Combinatorial 
Circuits

(d) Identity laws
– a  0 = a

– a  1 = a for all a  Z2.

(e) Complement laws
– a  ~a = 1

– a  ~a = 0 for all a  Z2.  
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Properties of Combinatorial 
Circuits

• Definition

– Let X1 = X1(x1, ..., xn) and X2 = X2(x1, ..., xn) be 
Boolean expressions. 

– We define X1 to be equal to X2 and write X1

= X2 if X1(a1,...,an) = X2(a1,...,an) for all ai Z2.

• Example

– Show that ~(x  y) = ~x  ~y.
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Properties of Combinatorial 
Circuits

• Definition

– We say that two combinatorial circuits, each 
having inputs x1, ..., xn and a single output, 
are equivalent if, whenever the circuits 
receive the same inputs, they produce the 
same outputs.

• Example

– Equivalence of the combinatorial circuits of 
Figures 11.2.4 and 11.2.5
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Properties of Combinatorial 
Circuits

• Theorem

– Let C1 and C2 be combinatorial circuits 
represented, respectively, by the Boolean 
expressions X1 = X1(x1,...,xn) and X2 = 
X2(x1,...,xn). 

– Then C1 and C2 are equivalent if and only if 
X1 = X2.
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Boolean Algebras

• Definition
– A Boolean algebra B consists of a set S

containing distinct elements 0 and 1, binary 
operators + and  on S, and a unary operator 
on S satisfying the following laws.
(a) Associative laws

– (x + y) + z = x + (y + z)
– (x  y)  z = x  (y  z)  for all x, y, z  S. 

(b) Commutative laws
– x + y = y + x, x  y = y  x for all x, y  S. 

(c) Distributive laws
– x  (y + z) = (x  y) + (x  z)
– x + (y  z) = (x + y)  (x + z)  for all x, y, z  S. 
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Boolean Algebras

(d) Identity laws
– x + 0 = x, x  1 = x for all x  S. 

(e) Complement laws
– x + x = 1, x  x = 0 for all x  S. 

– If B is a Boolean algebra, we write

B = (S, +, , , 0, 1). 

• Examples
– (Z2, , , ~, 0, 1)

– (S, , , ~, , U), where U is a universal set and S 
= P(U), the power set of U, with the operations X + 
Y = X  Y, X  Y = X  Y, X = ~X on S. 
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Boolean Algebras

• Theorem

– In a Boolean algebra, the element x of the 
complement laws is unique. Specifically, if x
+ y = 1 and xy = 0, then y = x.

– Proof.

• y = y1

= y(x + x)

= yx + yx

= xy + yx

= 0 + yx

= xx + yx

= xx + xy

= x(x + y)

= x1

= x
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Boolean Algebras

• Definition

– In a Boolean algebra, we call the element x
the complement of x.



16

Boolean Algebras

• Theorem
– Let B = (S, +, , , 0, 1) be a Boolean algebra. 

The following properties hold.
(a) Idempotent laws

– x + x = x, xx = x for all x  S.

(b) Bound laws
– x + 1 = 1, x0 = 0 for all x  S.

(c) Absorption laws
– x + xy = x, x(x + y) = x for all x, y  S.

(d) Involution law
– (x) = x for all x  S.
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Boolean Algebras

(e) 0 and 1 laws
– 0 = 1

– 1 = 0

(f) De Morgan’s laws for Boolean algebras
– (x + y) = xy for all x, y  S

– (xy) = x + y for all x, y  S.
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Boolean Algebras

• Definition

– The dual of a statement involving Boolean 
expressions is obtained by replacing 0 by 1, 
1 by 0, + by , and  by +.

• Example

– Determine the dual of (x + y) = xy. 
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Boolean Algebras

• Theorem
– The dual of a theorem about Boolean 

algebras is also a theorem.

– Proof.
• Suppose that T is a theorem about Boolean 

algebras. 

• Then there is a proof P of T involving only the 
definitions of a Boolean algebra.

• Let P be the sequence of statements obtained 
by replacing every statement in P by its dual.

• Then P is a proof of the dual of T.
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Boolean Algebras

• Example

– The dual of 

(x + x) = x

is 

xx = x.

– Recall the proof:
• x = x + 0

= x + (xx)

= (x + x)(x + x)

= (x + x)1

= x + x

– Now the proof:
• x = x1

= x(x + x)

= xx + xx

= xx + 0

= xx.
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