
Discrete Mathematics
CS204: Spring, 2008

Jong C. Park

Computer Science Department

KAIST

BOOLEAN ALGEBRAS AND
COMBINATORIAL CIRCUITS

Today’s Topics
Combinatorial Circuits

Properties of Combinatorial Circuits

Boolean Algebras

Boolean Functions and Synthesis of Circuits

Applications

Discrete Mathematics, 2008 Computer Science Division, KAIST 2

3

Combinatorial Circuits

• Definition
– An AND gate receives inputs x1 and x2, where x1

and x2 are bits, and produces output denoted x1
 x2, where x1  x2 = 1 if x1 = 1 and x2 = 1, 0
otherwise.

– An OR gate receives inputs x1 and x2, where x1
and x2 are bits, and produces output denoted x1
 x2, where x1  x2 = 1 if x1 = 1 or x2 = 1, 0
otherwise.

– A NOT gate (or inverter) receive input x, where
x is a bit, and produces output denoted ~x,
where ~x = 1 if x = 1, 0 if x = 1.

4

Combinatorial Circuits

• Note
– The logic table of a combinatorial circuit lists all

possible inputs together with the resulting
outputs.

• Examples
– logic tables for the basic AND, OR, and NOT

circuits
– the combinatorial circuit in Figure 11.1.4
– the non-combinatorial circuit in Figure 11.1.6
– the interconnected combinatorial circuit in

Figure 11.1.7

5

Combinatorial Circuits

• Definition
– Boolean expressions in the symbols x1, ..., xn

are defined recursively as follows.
• 0, 1, x1, ..., xn are Boolean expressions.

• If X1 and X2 are Boolean expressions, then (a) (X1),
(b) ~X1, (c) X1  X2, (d) X1  X2 are Boolean
expressions.

– If X is a Boolean expression in the symbols
x1, ..., xn, we sometimes write X = X(x1, ..., xn).

– Either symbol x or ~x is called a literal.

6

Combinatorial Circuits

• Examples

– Computing the value of a Boolean
expression

– Finding the combinatorial circuit
corresponding to the Boolean expression (x1

 (~x2  x3))  x2

7

Properties of Combinatorial
Circuits

• Theorem
– If , , and ~ are as in the previous definitions,

then the following properties hold, where Z2 =
{0, 1}.
(a) Associative laws

– (a  b)  c = a  (b  c)
– (a  b)  c = a  (b  c) for all a, b, c  Z2.

(b) Commutative laws
– a  b = b  a
– a  b = b  a, for all a, b  Z2.

(c) Distributive laws
– a  (b  c) = (a  b)  (a  c)
– a  (b  c) = (a  b)  (a  c) for all a, b, c  Z2.

8

Properties of Combinatorial
Circuits

(d) Identity laws
– a  0 = a

– a  1 = a for all a  Z2.

(e) Complement laws
– a  ~a = 1

– a  ~a = 0 for all a  Z2.

9

Properties of Combinatorial
Circuits

• Definition

– Let X1 = X1(x1, ..., xn) and X2 = X2(x1, ..., xn) be
Boolean expressions.

– We define X1 to be equal to X2 and write X1

= X2 if X1(a1,...,an) = X2(a1,...,an) for all ai Z2.

• Example

– Show that ~(x  y) = ~x  ~y.

10

Properties of Combinatorial
Circuits

• Definition

– We say that two combinatorial circuits, each
having inputs x1, ..., xn and a single output,
are equivalent if, whenever the circuits
receive the same inputs, they produce the
same outputs.

• Example

– Equivalence of the combinatorial circuits of
Figures 11.2.4 and 11.2.5

11

Properties of Combinatorial
Circuits

• Theorem

– Let C1 and C2 be combinatorial circuits
represented, respectively, by the Boolean
expressions X1 = X1(x1,...,xn) and X2 =
X2(x1,...,xn).

– Then C1 and C2 are equivalent if and only if
X1 = X2.

12

Boolean Algebras

• Definition
– A Boolean algebra B consists of a set S

containing distinct elements 0 and 1, binary
operators + and  on S, and a unary operator 
on S satisfying the following laws.
(a) Associative laws

– (x + y) + z = x + (y + z)
– (x  y)  z = x  (y  z) for all x, y, z  S.

(b) Commutative laws
– x + y = y + x, x  y = y  x for all x, y  S.

(c) Distributive laws
– x  (y + z) = (x  y) + (x  z)
– x + (y  z) = (x + y)  (x + z) for all x, y, z  S.

13

Boolean Algebras

(d) Identity laws
– x + 0 = x, x  1 = x for all x  S.

(e) Complement laws
– x + x = 1, x  x = 0 for all x  S.

– If B is a Boolean algebra, we write

B = (S, +, , , 0, 1).

• Examples
– (Z2, , , ~, 0, 1)

– (S, , , ~, , U), where U is a universal set and S
= P(U), the power set of U, with the operations X +
Y = X  Y, X  Y = X  Y, X = ~X on S.

14

Boolean Algebras

• Theorem

– In a Boolean algebra, the element x of the
complement laws is unique. Specifically, if x
+ y = 1 and xy = 0, then y = x.

– Proof.

• y = y1

= y(x + x)

= yx + yx

= xy + yx

= 0 + yx

= xx + yx

= xx + xy

= x(x + y)

= x1

= x

15

Boolean Algebras

• Definition

– In a Boolean algebra, we call the element x
the complement of x.

16

Boolean Algebras

• Theorem
– Let B = (S, +, , , 0, 1) be a Boolean algebra.

The following properties hold.
(a) Idempotent laws

– x + x = x, xx = x for all x  S.

(b) Bound laws
– x + 1 = 1, x0 = 0 for all x  S.

(c) Absorption laws
– x + xy = x, x(x + y) = x for all x, y  S.

(d) Involution law
– (x) = x for all x  S.

17

Boolean Algebras

(e) 0 and 1 laws
– 0 = 1

– 1 = 0

(f) De Morgan’s laws for Boolean algebras
– (x + y) = xy for all x, y  S

– (xy) = x + y for all x, y  S.

18

Boolean Algebras

• Definition

– The dual of a statement involving Boolean
expressions is obtained by replacing 0 by 1,
1 by 0, + by , and  by +.

• Example

– Determine the dual of (x + y) = xy.

19

Boolean Algebras

• Theorem
– The dual of a theorem about Boolean

algebras is also a theorem.

– Proof.
• Suppose that T is a theorem about Boolean

algebras.

• Then there is a proof P of T involving only the
definitions of a Boolean algebra.

• Let P be the sequence of statements obtained
by replacing every statement in P by its dual.

• Then P is a proof of the dual of T.

20

Boolean Algebras

• Example

– The dual of

(x + x) = x

is

xx = x.

– Recall the proof:
• x = x + 0

= x + (xx)

= (x + x)(x + x)

= (x + x)1

= x + x

– Now the proof:
• x = x1

= x(x + x)

= xx + xx

= xx + 0

= xx.

Summary

• Combinatorial
Circuits

• Properties of
Combinatorial
Circuits

• Boolean Algebras
• Boolean Functions

and Synthesis of
Circuits

• Applications

Discrete Mathematics, 2008 Computer Science Division, KAIST 21

