# Discrete Mathematics 

 CS204: Spring, 2008
## Jong C. Park

Computer Science Department
KAIST

# Today's Topics <br> Combinatorial Circuits <br> Properties of Combinatorial Circuits <br> Boolean Algebras <br> Boolean Functions and Synthesis of Circuits Applications <br> BOOLEAN ALGEBRAS AND COMBINATORIAL CIRCUITS 

## Combinatorial Circuits

- Definition
- An AND gate receives inputs $x_{1}$ and $x_{2}$, where $x_{1}$ and $x_{2}$ are bits, and produces output denoted $x_{1}$ $\wedge x_{2}$, where $x_{1} \wedge x_{2}=1$ if $x_{1}=1$ and $x_{2}=1,0$ otherwise.
- An OR gate receives inputs $x_{1}$ and $x_{2}$, where $x_{1}$ and $x_{2}$ are bits, and produces output denoted $x_{1}$ $\vee x_{2}$, where $x_{1} \vee x_{2}=1$ if $x_{1}=1$ or $x_{2}=1,0$ otherwise.
- A NOT gate (or inverter) receive input $x$, where $x$ is a bit, and produces output denoted $\sim x$, where $\sim x=1$ if $x=1,0$ if $x=1$.


## Combinatorial Circuits

- Note
- The logic table of a combinatorial circuit lists all possible inputs together with the resulting outputs.
- Examples
- logic tables for the basic AND, OR, and NOT circuits
- the combinatorial circuit in Figure 11.1.4
- the non-combinatorial circuit in Figure 11.1.6
- the interconnected combinatorial circuit in Figure 11.1.7


## Combinatorial Circuits

- Definition
- Boolean expressions in the symbols $x_{1}, \ldots, x_{n}$ are defined recursively as follows.
- $0,1, x_{1}, \ldots, x_{n}$ are Boolean expressions.
- If $X_{1}$ and $X_{2}$ are Boolean expressions, then (a) $\left(X_{1}\right)$, (b) $\sim X_{1,}$ (c) $X_{1} \vee X_{2}$ (d) $X_{1} \wedge X_{2}$ are Boolean expressions.
- If $X$ is a Boolean expression in the symbols $x_{1}, \ldots, x_{n}$, we sometimes write $X=X\left(x_{1}, \ldots, x_{n}\right)$.
- Either symbol $x$ or $\sim x$ is called a literal.


## Combinatorial Circuits

- Examples
- Computing the value of a Boolean expression
- Finding the combinatorial circuit corresponding to the Boolean expression ( $x_{1}$ $\left.\wedge\left(\sim x_{2} \vee x_{3}\right)\right) \vee x_{2}$


## Properties of Combinatorial Circuits

- Theorem
- If $\wedge, v$, and $\sim$ are as in the previous definitions, then the following properties hold, where $Z_{2}=$ $\{0,1\}$.
(a) Associative laws
$-(a \vee b) \vee c=a \vee(b \vee c)$
$-(a \wedge b) \wedge c=a \wedge(b \wedge c)$ for all $a, b, c \in Z_{2}$.
(b) Commutative laws
$-a \vee b=b \vee a$
$-\mathrm{a} \wedge \mathrm{b}=\mathrm{b} \wedge \mathrm{a}$, for all $\mathrm{a}, \mathrm{b} \in Z_{2}$.
(c) Distributive laws

$$
\begin{aligned}
& -a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \\
& -a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \text { for all } a, b, c \in Z_{2}
\end{aligned}
$$

## Properties of Combinatorial Circuits

(d) Identity laws

$$
-a \vee 0=a
$$

$$
-\mathrm{a} \wedge 1=\mathrm{a} \text { for all } \mathrm{a} \in Z_{2} .
$$

(e) Complement laws
$-a \vee \sim a=1$
$-\mathrm{a} \wedge \sim \mathrm{a}=0$ for all $\mathrm{a} \in Z_{2}$.

## Properties of Combinatorial Circuits

- Definition
- Let $X_{1}=X_{1}\left(X_{1}, \ldots, x_{n}\right)$ and $X_{2}=X_{2}\left(X_{1}, \ldots, x_{n}\right)$ be Boolean expressions.
- We define $X_{1}$ to be equal to $X_{2}$ and write $X_{1}$
$=X_{2}$ if $X_{1}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right)=X_{2}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right)$ for all $\mathrm{a}_{i} \in Z_{2}$.
- Example
- Show that $\sim(x \vee y)=\sim x \wedge \sim y$.


## Properties of Combinatorial Circuits

- Definition
- We say that two combinatorial circuits, each having inputs $x_{1}, \ldots, x_{n}$ and a single output, are equivalent if, whenever the circuits receive the same inputs, they produce the same outputs.
- Example
- Equivalence of the combinatorial circuits of Figures 11.2.4 and 11.2.5


## Properties of Combinatorial Circuits

- Theorem
- Let $C_{1}$ and $C_{2}$ be combinatorial circuits represented, respectively, by the Boolean expressions $X_{1}=X_{1}\left(X_{1}, \ldots, x_{n}\right)$ and $X_{2}=$ $X_{2}\left(x_{1}, \ldots, x_{n}\right)$.
- Then $C_{1}$ and $C_{2}$ are equivalent if and only if $X_{1}=X_{2}$.


## Boolean Algebras

- Definition
- A Boolean algebra $B$ consists of a set $S$ containing distinct elements 0 and 1, binary operators + and $\cdot$ on $S$, and a unary operator ' on $S$ satisfying the following laws.
(a) Associative laws

$$
\begin{aligned}
& -(x+y)+z=x+(y+z) \\
& -(x \cdot y) \cdot z=x \cdot(y \cdot z) \text { for all } x, y, z \in S .
\end{aligned}
$$

(b) Commutative laws
$-x+y=y+x_{1} x \cdot y=y \cdot x$ for all $x, y \in S$.
(c) Distributive laws
$-x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
$-x+(y \cdot z)=(x+y) \cdot(x+z)$ for all $x, y, z \in S$.

## Boolean Algebras

(d) Identity laws

$$
-x+0=x, x \cdot 1=x \text { for all } x \in S
$$

(e) Complement laws

$$
-x+x=1, x \cdot x=0 \text { for all } x \in S \text {. }
$$

- If $B$ is a Boolean algebra, we write

$$
B=\left(S,+, \cdot{ }^{\prime}, 0,1\right)
$$

- Examples
$-\left(Z_{2}, \vee, \wedge, \sim, 0,1\right)$
$-(S, \cup, \cap, \sim, \varnothing, U)$, where $U$ is a universal set and $S$ $=P(U)$, the power set of $U$, with the operations $X+$ $Y=X \cup Y, X \cdot Y=X \cap Y, X=\sim X$ on $S$.


## Boolean Algebras

- Theorem
- In a Boolean algebra, the element $x$ of the complement laws is unique. Specifically, if $x$ $+y=1$ and $x y=0$, then $y=x$.
- Proof.

$$
\begin{array}{rlrl}
y= & y 1 & & =0+y x \\
& =y(x+x) \\
& =y x+y x^{\prime} & & =x x+y x \\
& =x y+y x^{\prime} & & =x(x+y) \\
& & =x 1 \\
& =x
\end{array}
$$

## Boolean Algebras

- Definition
- In a Boolean algebra, we call the element $x$ the complement of $x$.


## Boolean Algebras

- Theorem
- Let $B=\left(S_{1}+,,^{\prime}, 0,1\right)$ be a Boolean algebra. The following properties hold.
(a) Idempotent laws

$$
-x+x=x, x x=x \text { for all } x \in S
$$

(b) Bound laws

$$
-x+1=1, x 0=0 \text { for all } x \in S
$$

(c) Absorption laws

$$
-x+x y=x, x(x+y)=x \text { for all } x, y \in S
$$

(d) Involution law

$$
-\left(x^{\prime}\right)^{\prime}=x \text { for all } x \in S
$$

## Boolean Algebras

(e) 0 and 1 laws

$$
\begin{aligned}
& -0^{\prime}=1 \\
& -1^{\prime}=0
\end{aligned}
$$

(f) De Morgan's laws for Boolean algebras
$-(x+y)^{\prime}=x y$ for all $x, y \in S$
$-(x y)^{\prime}=x+y$ for all $x, y \in S$.

## Boolean Algebras

- Definition
- The dual of a statement involving Boolean expressions is obtained by replacing 0 by 1 , 1 by 0 , + by ; and $\cdot$ by + .
- Example
- Determine the dual of $(x+y)^{\prime}=x^{\prime} y^{\prime}$.


## Boolean Algebras

- Theorem
- The dual of a theorem about Boolean algebras is also a theorem.
- Proof.
- Suppose that $T$ is a theorem about Boolean algebras.
- Then there is a proof $P$ of $T$ involving only the definitions of a Boolean algebra.
- Let $P$ be the sequence of statements obtained by replacing every statement in $P$ by its dual.
- Then $P$ is a proof of the dual of $T$.


## Boolean Algebras

- Example
- The dual of

$$
(x+x)=x
$$

is

$$
x x=x
$$

- Recall the proof:
- $x=x+0$

$$
\begin{aligned}
& =x+(x x) \\
& =(x+x)(x+x) \\
& =(x+x) 1 \\
& =x+x
\end{aligned}
$$

- Now the proof:
- $x=x 1$

$$
=x(x+x)
$$

$$
=x x+x x
$$

$$
=x x+0
$$

$$
=x X .
$$

## Summary

- Combinatorial Circuits
- Properties of

Combinatorial
Circuits

- Boolean Algebras
- Boolean Functions and Synthesis of Circuits
- Applications

