Today’s Topics

Combinatorial Circuits
Properties of Combinatorial Circuits
Boolean Algebras
Boolean Functions and Synthesis of Circuits
Applications
Combinatorial Circuits

• Definition
 – An **AND gate** receives inputs x_1 and x_2, where x_1 and x_2 are bits, and produces output denoted $x_1 \land x_2$, where $x_1 \land x_2 = 1$ if $x_1 = 1$ and $x_2 = 1$, 0 otherwise.
 – An **OR gate** receives inputs x_1 and x_2, where x_1 and x_2 are bits, and produces output denoted $x_1 \lor x_2$, where $x_1 \lor x_2 = 1$ if $x_1 = 1$ or $x_2 = 1$, 0 otherwise.
 – A **NOT gate** (or inverter) receive input x, where x is a bit, and produces output denoted $\sim x$, where $\sim x = 1$ if $x = 1$, 0 if $x = 1$.
Combinatorial Circuits

• Note
 – The logic table of a combinatorial circuit lists all possible inputs together with the resulting outputs.

• Examples
 – logic tables for the basic AND, OR, and NOT circuits
 – the combinatorial circuit in Figure 11.1.4
 – the non-combinatorial circuit in Figure 11.1.6
 – the interconnected combinatorial circuit in Figure 11.1.7
Combinatorial Circuits

• Definition
 – Boolean expressions in the symbols \(x_1, \ldots, x_n \) are defined recursively as follows.
 • 0, 1, \(x_1, \ldots, x_n \) are Boolean expressions.
 • If \(X_1 \) and \(X_2 \) are Boolean expressions, then (a) \((X_1)\), (b) \(~X_1\), (c) \(X_1 \lor X_2\), (d) \(X_1 \land X_2\) are Boolean expressions.
 – If \(X \) is a Boolean expression in the symbols \(x_1, \ldots, x_n \), we sometimes write \(X = X(x_1, \ldots, x_n) \).
 – Either symbol \(x \) or \(~x\) is called a literal.
Combinatorial Circuits

• Examples
 – Computing the value of a Boolean expression
 – Finding the combinatorial circuit corresponding to the Boolean expression \((x_1 \land (\sim x_2 \lor x_3)) \lor x_2\)
Properties of Combinatorial Circuits

• Theorem
 – If \land, \lor, and \neg are as in the previous definitions, then the following properties hold, where $\mathbb{Z}_2 = \{0, 1\}$.

 (a) Associative laws
 – $(a \lor b) \lor c = a \lor (b \lor c)$
 – $(a \land b) \land c = a \land (b \land c)$ for all $a, b, c \in \mathbb{Z}_2$.

 (b) Commutative laws
 – $a \lor b = b \lor a$
 – $a \land b = b \land a$, for all $a, b \in \mathbb{Z}_2$.

 (c) Distributive laws
 – $a \land (b \lor c) = (a \land b) \lor (a \land c)$
 – $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ for all $a, b, c \in \mathbb{Z}_2$.
Properties of Combinatorial Circuits

(d) Identity laws
 – \(a \lor 0 = a \)
 – \(a \land 1 = a \) for all \(a \in \mathbb{Z}_2 \).

(e) Complement laws
 – \(a \lor \neg a = 1 \)
 – \(a \land \neg a = 0 \) for all \(a \in \mathbb{Z}_2 \).
Properties of Combinatorial Circuits

• Definition
 – Let $X_1 = X_1(x_1, \ldots, x_n)$ and $X_2 = X_2(x_1, \ldots, x_n)$ be Boolean expressions.
 – We define X_1 to be equal to X_2 and write $X_1 = X_2$ if $X_1(a_1,\ldots,a_n) = X_2(a_1,\ldots,a_n)$ for all $a_i \in \mathbb{Z}_2$.

• Example
 – Show that $\neg(x \lor y) = \neg x \land \neg y$.
Properties of Combinatorial Circuits

• Definition
 – We say that two combinatorial circuits, each having inputs x_1, \ldots, x_n and a single output, are equivalent if, whenever the circuits receive the same inputs, they produce the same outputs.

• Example
 – Equivalence of the combinatorial circuits of Figures 11.2.4 and 11.2.5
Properties of Combinatorial Circuits

• Theorem
 – Let C_1 and C_2 be combinatorial circuits represented, respectively, by the Boolean expressions $X_1 = X_1(x_1,\ldots,x_n)$ and $X_2 = X_2(x_1,\ldots,x_n)$.
 – Then C_1 and C_2 are equivalent if and only if $X_1 = X_2$.
Boolean Algebras

• Definition
 – A **Boolean algebra** B consists of a set S containing distinct elements 0 and 1, binary operators $+$ and \cdot on S, and a unary operator $'$ on S satisfying the following laws.

 (a) **Associative laws**
 – $(x + y) + z = x + (y + z)$
 – $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in S$.

 (b) **Commutative laws**
 – $x + y = y + x, \ x \cdot y = y \cdot x$ for all $x, y \in S$.

 (c) **Distributive laws**
 – $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$
 – $x + (y \cdot z) = (x + y) \cdot (x + z)$ for all $x, y, z \in S$.
Boolean Algebras

(d) Identity laws
- $x + 0 = x$, $x \cdot 1 = x$ for all $x \in S$.

(e) Complement laws
- $x + x' = 1$, $x \cdot x' = 0$ for all $x \in S$.

- If B is a Boolean algebra, we write
 $B = (S, +, \cdot, ', 0, 1)$.

• Examples
 - $(\mathbb{Z}_2, \lor, \land, \neg, 0, 1)$
 - $(S, \cup, \cap, \neg, \emptyset, U)$, where U is a universal set and $S = \mathcal{P}(U)$, the power set of U, with the operations $X + Y = X \cup Y$, $X \cdot Y = X \cap Y$, $X' = \neg X$ on S.
Boolean Algebras

• Theorem
 – In a Boolean algebra, the element x' of the complement laws is unique. Specifically, if $x + y = 1$ and $xy = 0$, then $y = x'$.
 – Proof.
 • $y = y1$
 $= y(x + x')$
 $= yx + yx'$
 $= xy + yx'$
 $= 0 + yx'$
 $= xx' + yx'$
 $= x'x + x'y$
 $= x'(x + y)$
 $= x'1$
 $= x'$
Boolean Algebras

• Definition
 – In a Boolean algebra, we call the element x' the complement of x.
Boolean Algebras

• Theorem

 – Let $B = (S, +, \cdot, ', 0, 1)$ be a Boolean algebra. The following properties hold.
 (a) Idempotent laws
 $- x + x = x, xx = x$ for all $x \in S$.
 (b) Bound laws
 $- x + 1 = 1, x0 = 0$ for all $x \in S$.
 (c) Absorption laws
 $- x + xy = x, x(x + y) = x$ for all $x, y \in S$.
 (d) Involution law
 $- (x')' = x$ for all $x \in S$.
Boolean Algebras

(e) 0 and 1 laws
 – 0′ = 1
 – 1′ = 0

(f) De Morgan’s laws for Boolean algebras
 – (x + y)′ = x′y′ for all x, y ∈ S
 – (xy)′ = x′ + y′ for all x, y ∈ S.
Boolean Algebras

• Definition
 – The **dual** of a statement involving Boolean expressions is obtained by replacing 0 by 1, 1 by 0, + by \(\cdot \), and \(\cdot \) by +.

• Example
 – Determine the dual of \((x + y)' = x'y'\).
Boolean Algebras

• Theorem
 – The dual of a theorem about Boolean algebras is also a theorem.
 – Proof.
 • Suppose that \(T \) is a theorem about Boolean algebras.
 • Then there is a proof \(P \) of \(T \) involving only the definitions of a Boolean algebra.
 • Let \(P \) be the sequence of statements obtained by replacing every statement in \(P \) by its dual.
 • Then \(P \) is a proof of the dual of \(T \).
Boolean Algebras

• Example
 – The dual of
 $(x + x) = x$
 is
 $xx = x$.
 – Recall the proof:
 • $x = x + 0$
 = $x + (xx')$
 = $(x + x)(x + x')$
 = $(x + x)1$
 = $x + x$
 – Now the proof:
 • $x = x1$
 = $x(x + x')$
 = $xx + xx'$
 = $xx + 0$
 = xx.
Summary

• Combinatorial Circuits
• Properties of Combinatorial Circuits
• Boolean Algebras
 • Boolean Functions and Synthesis of Circuits
• Applications