Discrete Mathematics CS204: Spring, 2008

Jong C. Park Computer Science Department KAIST

Today's Topics

Combinatorial Circuits Properties of Combinatorial Circuits Boolean Algebras Boolean Functions and Synthesis of Circuits Applications

BOOLEAN ALGEBRAS AND COMBINATORIAL CIRCUITS

- Definition
 - An AND gate receives inputs x_1 and x_2 , where x_1 and x_2 are bits, and produces output denoted x_1 $\land x_2$, where $x_1 \land x_2 = 1$ if $x_1 = 1$ and $x_2 = 1$, 0 otherwise.
 - An OR gate receives inputs x_1 and x_2 , where x_1 and x_2 are bits, and produces output denoted x_1 $\lor x_2$, where $x_1 \lor x_2 = 1$ if $x_1 = 1$ or $x_2 = 1$, 0 otherwise.
 - A NOT gate (or inverter) receive input x, where x is a bit, and produces output denoted $\sim x$, where $\sim x = 1$ if x = 1, 0 if x = 1.

- Note
 - The logic table of a combinatorial circuit lists all possible inputs together with the resulting outputs.
- Examples
 - logic tables for the basic AND, OR, and NOT circuits
 - the combinatorial circuit in Figure 11.1.4
 - the non-combinatorial circuit in Figure 11.1.6
 - the interconnected combinatorial circuit in Figure 11.1.7

Definition

- Boolean expressions in the symbols x_1 , ..., x_n are defined recursively as follows.
 - 0, 1, x_1 , ..., x_n are Boolean expressions.
 - If X_1 and X_2 are Boolean expressions, then (a) (X_1) , (b) $\sim X_1$, (c) $X_1 \lor X_2$, (d) $X_1 \land X_2$ are Boolean expressions.
- If X is a Boolean expression in the symbols $x_1, ..., x_n$, we sometimes write $X = X(x_1, ..., x_n)$.
- Either symbol x or $\sim x$ is called a literal.

- Examples
 - Computing the value of a Boolean expression
 - Finding the combinatorial circuit corresponding to the Boolean expression ($x_1 \land (\sim x_2 \lor x_3)$) $\lor x_2$

- Theorem
 - If \land , \lor , and \sim are as in the previous definitions, then the following properties hold, where $Z_2 = \{0, 1\}$.
 - (a) Associative laws

- (a
$$\lor$$
 b) \lor c = a \lor (b \lor c)

-
$$(a \land b) \land c = a \land (b \land c)$$
 for all a, b, $c \in Z_2$.

(b) Commutative laws

$$-a \lor b = b \lor a$$

 $-a \wedge b = b \wedge a$, for all $a, b \in Z_2$.

(c) Distributive laws

$$-a \land (b \lor c) = (a \land b) \lor (a \land c)$$

 $-a \lor (b \land c) = (a \lor b) \land (a \lor c)$ for all $a, b, c \in Z_2$.

(d) Identity laws $-a \lor 0 = a$ $-a \land 1 = a$ for all $a \in Z_2$. (e) Complement laws $-a \lor \neg a = 1$ $-a \land \neg a = 0$ for all $a \in Z_2$.

- Definition
 - Let $X_1 = X_1(x_1, ..., x_n)$ and $X_2 = X_2(x_1, ..., x_n)$ be Boolean expressions.
 - We define X_1 to be equal to X_2 and write X_1 = X_2 if $X_1(a_1,...,a_n) = X_2(a_1,...,a_n)$ for all $a_i \in Z_2$.
- Example

- Show that $\sim (x \lor y) = \sim x \land \sim y$.

- Definition
 - We say that two combinatorial circuits, each having inputs x_1 , ..., x_n and a single output, are equivalent if, whenever the circuits receive the same inputs, they produce the same outputs.
- Example
 - Equivalence of the combinatorial circuits of Figures 11.2.4 and 11.2.5

- Theorem
 - Let C_1 and C_2 be combinatorial circuits represented, respectively, by the Boolean expressions $X_1 = X_1(x_1,...,x_n)$ and $X_2 = X_2(x_1,...,x_n)$.
 - Then C_1 and C_2 are equivalent if and only if $X_1 = X_2$.

- Definition
 - A Boolean algebra B consists of a set S containing distinct elements 0 and 1, binary operators + and · on S, and a unary operator ' on S satisfying the following laws.
 - (a) Associative laws

-(x + y) + z = x + (y + z) $-(x \cdot y) \cdot z = x \cdot (y \cdot z) \text{ for all } x, y, z \in S.$

(b) Commutative laws

 $-x + y = y + x, x \cdot y = y \cdot x$ for all $x, y \in S$. (c) Distributive laws

$$-x \cdot (y + z) = (x \cdot y) + (x \cdot z) -x + (y \cdot z) = (x + y) \cdot (x + z) \text{ for all } x, y, z \in S.$$

(d) Identity laws $-x + 0 = x, x \cdot 1 = x$ for all $x \in S$. (e) Complement laws $-x + x' = 1, x \cdot x' = 0$ for all $x \in S$. - If *B* is a Boolean algebra, we write $B = (S, +, \cdot, ', 0, 1)$.

• Examples

- $(Z_2, \lor, \land, \sim, 0, 1)$ - $(S, \cup, \cap, \sim, \emptyset, U)$, where U is a universal set and S = P(U), the power set of U, with the operations X + $Y = X \cup Y, X \cdot Y = X \cap Y, X' = \sim X$ on S.

- Theorem
 - In a Boolean algebra, the element x' of the complement laws is unique. Specifically, if x + y = 1 and xy = 0, then y = x'.
 - Proof.

Definition

– In a Boolean algebra, we call the element *x*' the complement of *x*.

• Theorem

-Let $B = (S_1 + ..., ..., 0, 1)$ be a Boolean algebra. The following properties hold. (a) Idempotent laws -x + x = x, xx = x for all $x \in S$. (b) Bound laws -x + 1 = 1, $x_0 = 0$ for all $x \in S$. (c) Absorption laws -x + xy = x, x(x + y) = x for all $x, y \in S$. (d) Involution law -(x')' = x for all $x \in S$.

(e) 0 and 1 laws

$$-0' = 1$$

$$-1' = 0$$

(f) De Morgan's laws for Boolean algebras

$$-(x + y)' = x'y' \text{ for all } x, y \in S$$
$$-(xy)' = x' + y' \text{ for all } x, y \in S.$$

- Definition
 - The dual of a statement involving Boolean expressions is obtained by replacing 0 by 1, 1 by 0, + by ·, and · by +.
- Example

- Determine the dual of (x + y)' = x'y'.

- Theorem
 - The dual of a theorem about Boolean algebras is also a theorem.
 - Proof.
 - Suppose that *T* is a theorem about Boolean algebras.
 - Then there is a proof *P* of *T* involving only the definitions of a Boolean algebra.
 - Let *P* be the sequence of statements obtained by replacing every statement in *P* by its dual.
 - Then *P* is a proof of the dual of *T*.

- Example
 - The dual of (x + x) = xis

$$XX = X$$

- Recall the proof:

•
$$x = x + 0$$

= $x + (xx')$
= $(x + x)(x + x')$
= $(x + x)1$
= $x + x$

- Now the proof: • x = x1 = x(x + x') = xx + xx' = xx + 0= xx.

Summary

- Combinatorial Circuits
- Properties of Combinatorial Circuits
- Boolean Algebras
- Boolean Functions and Synthesis of Circuits
- Applications