Today’s Topics
Sequential Circuits and Finite-State Machines
Finite-State Automata
Languages and Grammars
NondeterministicFinite-State Automata
Relationships Between Languages and Automata
Sequential Circuits and Finite-State Machines

• Note
 – We assume that the state changes only at time $t = 0, 1, \ldots$

• Definitions
 – A unit time delay accepts as input a bit x_t at time t and outputs x_{t-1}, the bit received as input at time $t - 1$.
 – The unit time delay is drawn as in Figure 12.1.1.
 – A serial adder accepts as input two binary numbers.

• Example
 – Serial-Adder Circuit
Sequential Circuits and Finite-State Machines

• Definition
 – A finite-state machine M consists of
 (a) A finite set I of input symbols.
 (b) A finite set O of output symbols.
 (c) A finite set S of states.
 (d) A next-state function f from $S \times I$ into S.
 (e) An output function g from $S \times I$ into O.
 (f) An initial state $\sigma \in S$.
 – We write $M = (I, O, S, f, g, \sigma)$.
Sequential Circuits and Finite-State Machines

• Definition
 – Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine.
 – The transition diagram of M is a digraph G whose vertices are the members of S.
 • An arrow designates the initial state σ.
 • A directed edge (σ_1, σ_2) exists in G if there exists an input i with $f(\sigma_1, i) = \sigma_2$. In this case, if $g(\sigma_1, i) = o$, the edge (σ_1, σ_2) is labeled i/o.
Sequential Circuits and Finite-State Machines

• Definition

Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine. An input string for M is a string over I. The string $y_1 \cdots y_n$ is the output string for M corresponding to the input string $\alpha = x_1 \cdots x_n$ if there exist states $\sigma_0, \ldots, \sigma_n \in S$ with

- $\sigma_0 = \sigma$
- $\sigma_i = f(\sigma_{i-1}, x_i)$ for $i = 1, \ldots, n$,
- $y_i = g(\sigma_{i-1}, x_i)$ for $i = 1, \ldots, n$.
Sequential Circuits and Finite-State Machines

• Examples
 – A Serial-Adder Finite-State Machine
 – The SR Flip-Flop
Finite-State Automata

• Definition
 – A finite-state automaton
 \[A = (I, O, S, f, g, \sigma) \]
 is a finite-state machine in which the set of output symbols is \{0, 1\} and where the current state determines the last output.
 – Those states for which the last output was 1 are called accepting states.

• Note
 – The transition diagram of a finite-state automaton is usually drawn with the accepting states in double circles and the output symbols omitted.
Finite-State Automata

• Examples
 – Draw the transition diagram of the finite-state machine A defined by the table.
 – Draw the transition diagram of the finite-state automaton of Figure 12.2.3 as a transition diagram of a finite-state machine.
Finite-State Automata

• Note

– As an alternative to the earlier definition, we can regard a finite-state automaton A as consisting of

 (1) A finite set I of input symbols
 (2) A finite set S of states
 (3) A next-state function f from $S \times I$ into S
 (4) A subset A of S of accepting states
 (5) An initial state $\sigma \in S$.

– If we use this characterization, we write

 $A = (I, S, f, A, \sigma)$.
Finite-State Automata

• Example
 – Draw the transition diagram of the finite-state automaton
 \[A = (I, S, f, A, \sigma), \]
 where
 \[I = \{a, b\}, \]
 \[S = \{\sigma_0, \sigma_1, \sigma_2\}, \]
 \[A = \{\sigma_2\}, \]
 \[\sigma = \sigma_0, \]
 with \(f \) given by the table.
Finite-State Automata

• Definition
 – Let $A = (I, S, f, A, \sigma)$ be a finite-state automaton.
 – Let $\alpha = x_1 \ldots x_n$ be a string over I.
 – If there exist states $\sigma_0, \ldots, \sigma_n$ satisfying
 (a) $\sigma_0 = \sigma$
 (b) $f(\sigma_{i-1}, x_i) = \sigma_i$ for $i = 1, \ldots, n$
 (c) $\sigma_n \in A$,
 we say that α is accepted by A. The null string is accepted if and only if $\sigma \in A$. We let $Ac(A)$ denote the set of strings accepted by A and we say that A accepts $Ac(A)$.
 – Let $\alpha = x_1 \ldots x_n$ be a string over I. Define states $\sigma_0, \ldots, \sigma_n$ by conditions (a) and (b) above. We call the (directed) path $(\sigma_0, \ldots, \sigma_n)$ the path representing α in A.
Finite-State Automata

• Examples
 – string acceptance
 – Design a finite-state automaton that accepts precisely those strings over \{a, b\} that contain no a’s.
 – Design a finite-state automaton that accepts precisely those strings over \{a, b\} that contain an odd number of a’s.
Finite-State Automata

Algorithm 12.2.10: Determining whether a string over \(\{a, b\}\) is accepted by the finite-state automaton whose transition diagram is given in Figure 12.2.7.

Input: \(n\), the length of the string (\(n = 0\) designates the null string); \(s_1s_2 \cdots s_n\), the string

Output: “Accept” if the string is accepted
“Reject” if the string is not accepted

\[
\text{fsa}(s, n) \{ \\
\text{state} = 'E' \\
\text{for } i = 1 \text{ to } n \{ \\
\quad \text{if (state} == 'E' \wedge s_i == 'a') \\
\quad \quad \text{state} = 'O' \\
\quad \text{if (state} == 'O' \wedge s_i == 'a') \\
\quad \quad \text{state} = 'E' \\
\\} \\
\text{if (state} == 'O') \\
\quad \text{return “Accept”} \\
\text{else} \\
\quad \text{return “Reject”} \\
\}
\]
Finite-State Automata

• Definition
 – The finite-state automata A and A' are equivalent if $Ac(A) = Ac(A')$.

• Example
 – Verify that the two finite-state automata of Figures 12.2.6 and 12.2.8 are equivalent.
Summary

• Sequential Circuits and Finite-State Machines
• Finite-State Automata
• Languages and Grammars
• Nondeterministic Finite-State Automata
• Relationships Between Languages and Automata