Today’s Topics
Sequential Circuits and Finite-State Machines
Finite-State Automata
Languages and Grammars
Nondeterministic Finite-State Automata
Relationships Between Languages and Automata

AUTOMATA, GRAMMARS, AND LANGUAGES
Sequential Circuits and Finite-State Machines

• Note
 – We assume that the state changes only at time $t = 0, 1, ...$

• Definitions
 – A **unit time delay** accepts as input a bit x_t at time t and outputs x_{t-1}, the bit received as input at time $t - 1$.
 – The unit time delay is drawn as in Figure 12.1.1.
 – A **serial adder** accepts as input two binary numbers.

• Example
 – Serial-Adder Circuit
Sequential Circuits and Finite-State Machines

• Definition

– A finite-state machine M consists of
 (a) A finite set I of input symbols.
 (b) A finite set O of output symbols.
 (c) A finite set S of states.
 (d) A next-state function f from $S \times I$ into S.
 (e) An output function g from $S \times I$ into O.
 (f) An initial state $\sigma \in S$.

– We write $M = (I, O, S, f, g, \sigma)$.
Sequential Circuits and Finite-State Machines

• Definition
 – Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine.
 – The **transition diagram** of M is a digraph G whose vertices are the members of S.
 • An arrow designates the initial state σ.
 • A directed edge (σ_1, σ_2) exists in G if there exists an input i with $f(\sigma_1, i) = \sigma_2$. In this case, if $g(\sigma_1, i) = o$, the edge (σ_1, σ_2) is labeled i/o.
Sequential Circuits and Finite-State Machines

• Definition

- Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine. An input string for M is a string over I. The string $y_1 \cdots y_n$ is the output string for M corresponding to the input string $\alpha = x_1 \cdots x_n$ if there exist states $\sigma_0, \ldots, \sigma_n \in S$ with

 $\sigma_0 = \sigma$

 $\sigma_i = f(\sigma_{i-1}, x_i)$ for $i = 1, \ldots, n$,

 $y_i = g(\sigma_{i-1}, x_i)$ for $i = 1, \ldots, n$.

Sequential Circuits and Finite-State Machines

• Examples
 – A Serial-Adder Finite-State Machine
 – The SR Flip-Flop
Finite-State Automata

• Definition
 – A finite-state automaton
 \[A = (I, O, S, f, g, \sigma) \]
 is a finite-state machine in which the set of output symbols is \{0, 1\} and where the current state determines the last output.
 – Those states for which the last output was 1 are called accepting states.

• Note
 – The transition diagram of a finite-state automaton is usually drawn with the accepting states in double circles and the output symbols omitted.
Finite-State Automata

• Examples
 – Draw the transition diagram of the finite-state machine A defined by the table.
 – Draw the transition diagram of the finite-state automaton of Figure 12.2.3 as a transition diagram of a finite-state machine.
Finite-State Automata

• Note
 – As an alternative to the earlier definition, we can regard a finite-state automaton A as consisting of
 (1) A finite set I of input symbols
 (2) A finite set S of states
 (3) A next-state function f from $S \times I$ into S
 (4) A subset A of S of accepting states
 (5) An initial state $\sigma \in S$.
 – If we use this characterization, we write $A = (I, S, f, A, \sigma)$.
Finite-State Automata

• Example
 – Draw the transition diagram of the finite-state automaton
 \[A = (I, S, f, A, \sigma), \]
 where
 \[I = \{a, b\}, \]
 \[S = \{\sigma_0, \sigma_1, \sigma_2\}, \]
 \[A = \{\sigma_2\}, \]
 \[\sigma = \sigma_0, \]
 with \(f \) given by the table.
Finite-State Automata

• Definition
 – Let \(A = (I, S, f, A, \sigma) \) be a finite-state automaton.
 – Let \(\alpha = x_1 \ldots x_n \) be a string over \(I \).
 – If there exist states \(\sigma_0, \ldots, \sigma_n \) satisfying
 (a) \(\sigma_0 = \sigma \)
 (b) \(f(\sigma_{i-1}, x_i) = \sigma_i \) for \(i = 1, \ldots, n \)
 (c) \(\sigma_n \in A \),
 we say that \(\alpha \) is accepted by \(A \). The null string is accepted if and only if \(\sigma \in A \). We let \(A\mathcal{c}(A) \) denote the set of strings accepted by \(A \) and we say that \(A \) accepts \(A\mathcal{c}(A) \).

 – Let \(\alpha = x_1 \ldots x_n \) be a string over \(I \). Define states \(\sigma_0, \ldots, \sigma_n \) by conditions (a) and (b) above. We call the (directed) path \((\sigma_0, \ldots, \sigma_n) \) the path representing \(\alpha \) in \(A \).
Finite-State Automata

• Examples
 – string acceptance
 – Design a finite-state automaton that accepts precisely those strings over \{a, b\} that contain no \(a\)'s.
 – Design a finite-state automaton that accepts precisely those strings over \{a, b\} that contain an odd number of \(a\)'s.
Finite-State Automata

Algorithm 12.2.10: Determining whether a string over \{a, b\} is accepted by the finite-state automaton whose transition diagram is given in Figure 12.2.7.

Input: \(n \), the length of the string (\(n = 0 \) designates the null string); \(s_1 s_2 \cdots s_n \), the string

Output: “Accept” if the string is accepted
“Reject” if the string is not accepted

\[\text{fsa}(s, n) \]
\[\text{state} = \text{‘E’} \]
\[\text{for } i = 1 \text{ to } n \{ \]
\[\quad \text{if } (\text{state} == \text{‘E’} \land s_i == \text{‘a’}) \]
\[\quad \quad \text{state} = \text{‘O’} \]
\[\quad \text{if } (\text{state} == \text{‘O’} \land s_i == \text{‘a’}) \]
\[\quad \quad \text{state} = \text{‘E’} \]
\[\} \]
\[\text{if } (\text{state} == \text{‘O’}) \]
\[\quad \text{return } \text{“Accept”} \]
\[\text{else} \]
\[\quad \text{return } \text{“Reject”} \]
\[\} \]
Finite-State Automata

• Definition
 – The finite-state automata A and A' are equivalent if $Ac(A) = Ac(A')$.

• Example
 – Verify that the two finite-state automata of Figures 12.2.6 and 12.2.8 are equivalent.
Languages and Grammars

• Definition
 – Let A be a finite set. A (formal) language L over A is a subset of A^*, the set of all strings over A.

• Example
 – Let $A = \{a, b\}$. The set L of all strings over A containing an odd number of a’s is a language over A. L is precisely the set of strings over A accepted by the finite-state automaton of Figure 12.2.7.
Languages and Grammars

• Definition
 – A phrase-structure grammar (or, simply, grammar) G consists of
 (a) A finite set N of nonterminal symbols
 (b) A finite set T of terminal symbols where $N \cap T = \emptyset$
 (c) A finite subset P of $[(N \cup T)^* - T^*] \times (N \cup T)^*$, called the set of productions
 (d) A starting symbol $\sigma \in N$.
 – We write $G = (N, T, P, \sigma)$.

• Note
 – A production is usually written $A \rightarrow B$.
Languages and Grammars

• Example
 – Let

\[
N = \{\sigma, S\}, \\
T = \{a, b\}, \\
P = \{\sigma \rightarrow b\sigma, \sigma \rightarrow aS, S \rightarrow bS, S \rightarrow b\}.
\]
 – Then \(G = (N, T, P, \sigma)\) is a grammar.
Summary

• Sequential Circuits and Finite-State Machines
• Finite-State Automata
• Languages and Grammars
• Nondeterministic Finite-State Automata
• Relationships Between Languages and Automata