
Discrete Mathematics
CS204: Spring, 2008

Jong C. Park

Computer Science Department

KAIST

AUTOMATA, GRAMMARS,
AND LANGUAGES

Today’s Topics
Sequential Circuits and Finite-State Machines

Finite-State Automata

Languages and Grammars

Nondeterministic Finite-State Automata

Relationships Between Languages and Automata

Discrete Mathematics, 2008 Computer Science Division, KAIST 2

3

Sequential Circuits and Finite-
State Machines

• Note
– We assume that the state changes only at time t =

0, 1, …

• Definitions
– A unit time delay accepts as input a bit xt at time t

and outputs xt-1, the bit received as input at time t
– 1.

– The unit time delay is drawn as in Figure 12.1.1.

– A serial adder accepts as input two binary numbers.

• Example
– Serial-Adder Circuit

4

Sequential Circuits and Finite-
State Machines

• Definition

– A finite-state machine M consists of

(a) A finite set I of input symbols.

(b) A finite set O of output symbols.

(c) A finite set S of states.

(d) A next-state function f from S I into S.

(e) An output function g from S I into O.

(f) An initial state S.

– We write M = (I, O, S, f, g,).

5

Sequential Circuits and Finite-
State Machines

• Definition

– Let M = (I, O, S, f, g,) be a finite-state
machine.

– The transition diagram of M is a digraph G
whose vertices are the members of S.

• An arrow designates the initial state .

• A directed edge (1, 2) exists in G if there exists
an input i with f(1,i) = 2. In this case, if g(1,i)
= o, the edge (1,2) is labeled i /o.

6

Sequential Circuits and Finite-
State Machines

• Definition

– Let M = (I, O, S, f, g,) be a finite-state
machine. An input string for M is a string
over I. The string y1yn is the output string
for M corresponding to the input string =
x1xn if there exist states 0,...,n S with

0 =

i = f(i-1,xi) for i = 1, ..., n;

yi = g(i-1,xi) for i = 1, ..., n.

7

Sequential Circuits and Finite-
State Machines

• Examples

– A Serial-Adder Finite-State Machine

– The SR Flip-Flop

8

Finite-State Automata

• Definition
– A finite-state automaton

A = (I, O, S, f, g,)
is a finite-state machine in which the set of
output symbols is {0, 1} and where the current
state determines the last output.

– Those states for which the last output was 1 are
called accepting states.

• Note
– The transition diagram of a finite-state

automaton is usually drawn with the accepting
states in double circles and the output symbols
omitted.

9

Finite-State Automata

• Examples

– Draw the transition diagram of the finite-
state machine A defined by the table.

– Draw the transition diagram of the finite-
state automaton of Figure 12.2.3 as a
transition diagram of a finite-state machine.

10

Finite-State Automata
• Note

– As an alternative to the earlier definition, we
can regard a finite-state automaton A as
consisting of
(1) A finite set I of input symbols

(2) A finite set S of states

(3) A next-state function f from S I into S
(4) A subset A of S of accepting states

(5) An initial state S.

– If we use this characterization, we write

A = (I, S, f, A,).

11

Finite-State Automata

• Example
– Draw the transition diagram of the finite-state

automaton

A = (I, S, f, A,),

where

I = {a, b},

S = {0, 1, 2},

A = {2}},

 = 0,

with f given by the table.

12

Finite-State Automata

• Definition
– Let A = (I, S, f, A,) be a finite-state automaton.
– Let = x1 xn be a string over I.
– If there exist states 0, , n satisfying

(a) 0 =
(b) f(i-1, xi) = i for i = 1, , n
(c) n A,

we say that is accepted by A. The null string is
accepted if and only if A. We let Ac(A) denote
the set of strings accepted by A and we say that A
accepts Ac(A).

– Let = x1 xn be a string over I. Define states 0,
, n by conditions (a) and (b) above. We call the
(directed) path (0, , n) the path representing in
A.

13

Finite-State Automata

• Examples

– string acceptance

– Design a finite-state automaton that accepts
precisely those strings over {a, b} that
contain no a’s.

– Design a finite-state automaton that accepts
precisely those strings over {a, b} that
contain an odd number of a’s.

14

Finite-State Automata

15

Finite-State Automata

• Definition

– The finite-state automata A and A’ are
equivalent if Ac(A) = Ac(A’).

• Example

– Verify that the two finite-state automata of
Figures 12.2.6 and 12.2.8 are equivalent.

16

Languages and Grammars

• Definition
– Let A be a finite set. A (formal) language L

over A is a subset of A*, the set of all strings
over A.

• Example
– Let A = {a, b}. The set L of all strings over A

containing an odd number of a’s is a
language over A. L is precisely the set of
strings over A accepted by the finite-state
automaton of Figure 12.2.7.

17

Languages and Grammars

• Definition
– A phrase-structure grammar (or, simply,

grammar) G consists of
(a) A finite set N of nonterminal symbols

(b) A finite set T of terminal symbols where N T =

(c) A finite subset P of [(N T)* - T*] (N T)*, called
the set of productions

(d) A starting symbol N.

– We write G = (N, T, P,).

• Note
– A production is usually written A B.

18

Languages and Grammars

• Example

– Let

N = {, S},

T = {a, b},

P = { b, aS, S bS, S b}.

– Then G = (N, T, P,) is a grammar.

19

Languages and Grammars

• Definition
– Let G = (N, T, P,) be a grammar.
– If is a production and xy (N T)*, we say

that xy is directly derivable from xy and write xy
 xy.

– If i (N T)* for i = 1, ..., n, and i+1 is directly
derivable from i for i = 1, ..., n – 1, we say that n
is derivable from 1 and write 1 n.

– We call 1 2 n the derivation of n
(from 1).

– By convention, any element of (N T)* is derivable
from itself.

– The language generated by G, written L(G), consists
of all strings over T derivable from .

20

Languages and Grammars
• Examples

– Determine L(G) where G is the grammar of the
earlier example.

– A Grammar for Integers
• Backus normal form (or Backus-Naur form, BNF)

– the nonterminal symbols typically begin with “<“ and end
with “>”.

– the production S T is written S ::= T.
– Productions of the form

S ::= T1,
S ::= T2,
...,
S ::= Tn

may be combined as S ::= T1 | T2 | | Tn.

21

Languages and Grammars

• Definition
– Let G be a grammar and let denote the null

string.
(a) If every production is of the form A ,

where , (N T)*, A N, (N T)* - {}, we
call G a context-sensitive (or type 1) grammar.

(b) If every production is of the form A , where A
N, (N T)*, we call G a context-free (or type 2)
grammar.

(c) If every production is of the form A a or A aB
or A , where A, B N, a T, we call G a regular
(or type 3) grammar.

22

Languages and Grammars

• Definition

– A language L is context-sensitive
(respectively, context-free, regular) if there is
a context-sensitive (respectively, context-free,
regular) grammar G with L = L(G).

• Definition

– Grammars G and G’ are equivalent if L(G) =
L(G’).

23

Languages and Grammars

• Definition
– A context-free interactive Lindenmayer grammar

consists of
(a) A finite set N of nonterminal symbols

(b) A finite set T of terminal symbols where N T =

(c) A finite set P of productions A B, where A N T
and B (N T)*

(d) A starting symbol N.

• Note
– In a context-free interactive Lindenmayer grammar,

to derive the string from the string , all symbols
in must be replaced simultaneously.

Summary

• Sequential Circuits and
Finite-State Machines

• Finite-State Automata

• Languages and
Grammars

• Nondeterministic
Finite-State Automata

• Relationships Between
Languages and
Automata

Discrete Mathematics, 2008 Computer Science Division, KAIST 24

