Discrete Mathematics CS204: Spring, 2008

Jong C. Park Computer Science Department KAIST

Today's Topics

Sequential Circuits and Finite-State Machines Finite-State Automata Languages and Grammars Nondeterministic Finite-State Automata Relationships Between Languages and Automata

AUTOMATA, GRAMMARS, AND LANGUAGES

- Note
 - We assume that the state changes only at time t = 0, 1, ...
- Definitions
 - A unit time delay accepts as input a bit x_t at time t and outputs x_{t-1} , the bit received as input at time t 1.
 - The unit time delay is drawn as in Figure 12.1.1.
 - A serial adder accepts as input two binary numbers.
- Example
 - Serial-Adder Circuit

- Definition
 - A finite-state machine *M* consists of
 (a) A finite set *I* of input symbols.
 (b) A finite set O of output symbols.
 (c) A finite set S of states
 - (c) A finite set *S* of states.
 - (d) A next-state function f from $S \times I$ into S.
 - (e) An output function g from $S \times I$ into O.

(f) An initial state $\sigma \in S$.

-We write $M = (I, O, S, f, g, \sigma)$.

- Definition
 - Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine.
 - The transition diagram of *M* is a digraph *G* whose vertices are the members of *S*.
 - An arrow designates the initial state σ .
 - A directed edge (σ_1, σ_2) exists in *G* if there exists an input *i* with $f(\sigma_1, i) = \sigma_2$. In this case, if $g(\sigma_1, i) = o_i$, the edge (σ_1, σ_2) is labeled *i* / *o*.

- Definition
 - Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine. An input string for M is a string over I. The string $y_1 \cdots y_n$ is the output string for M corresponding to the input string $\alpha = x_1 \cdots x_n$ if there exist states $\sigma_0, \dots, \sigma_n \in S$ with

$$\sigma_0 = \sigma$$

 $\sigma_i = f(\sigma_{i-1}, x_i)$ for $i = 1, ..., n_i$
 $y_i = g(\sigma_{i-1}, x_i)$ for $i = 1, ..., n_i$

- Examples
 - A Serial-Adder Finite-State Machine
 - The SR Flip-Flop

- Definition
 - A finite-state automaton

 $A = (I, O, S, f, g, \sigma)$

is a finite-state machine in which the set of output symbols is {0, 1} and where the current state determines the last output.

- Those states for which the last output was 1 are called accepting states.
- Note
 - The transition diagram of a finite-state automaton is usually drawn with the accepting states in double circles and the output symbols omitted.

- Examples
 - Draw the transition diagram of the finitestate machine *A* defined by the table.
 - Draw the transition diagram of the finitestate automaton of Figure 12.2.3 as a transition diagram of a finite-state machine.

- Note
 - As an alternative to the earlier definition, we can regard a finite-state automaton A as consisting of
 - (1) A finite set *I* of input symbols
 - (2) A finite set *S* of states
 - (3) A next-state function f from $S \times I$ into S
 - (4) A subset A of S of accepting states
 - (5) An initial state $\sigma \in S$.
 - If we use this characterization, we write $A = (I, S, f, A, \sigma).$

- Example
 - Draw the transition diagram of the finite-state automaton

$$A = (I, S, f, A, \sigma),$$

where

$$I = \{a, b\},\$$

$$S = \{\sigma_0, \sigma_1, \sigma_2\},\$$

$$A = \{\sigma_2\}\},\$$

$$\sigma = \sigma_0,\$$
with *f* given by the table.

• Definition

- Let $A = (I, S, f, A, \sigma)$ be a finite-state automaton.
- $\text{Let } \alpha = x_1 \cdots x_n$ be a string over *I*.
- If there exist states σ_0 , ..., σ_n satisfying

(a)
$$\sigma_0 = \sigma$$

(b) $f(\sigma_{i-1}, x_i) = \sigma_i$ for $i = 1, \dots, n$
(c) $\sigma_n \in A_i$

we say that α is accepted by A. The null string is accepted if and only if $\sigma \in A$. We let Ac(A) denote the set of strings accepted by A and we say that Aaccepts Ac(A).

- Let $\alpha = x_1 \cdots x_n$ be a string over *I*. Define states σ_0 , ..., σ_n by conditions (a) and (b) above. We call the (directed) path (σ_0 , ..., σ_n) the path representing α in *A*.

- Examples
 - string acceptance
 - Design a finite-state automaton that accepts precisely those strings over {*a*, *b*} that contain no *a*'s.
 - Design a finite-state automaton that accepts precisely those strings over {*a*, *b*} that contain an odd number of *a*'s.

Algorithm 12.2.10: Determining whether a string over $\{a, b\}$ is accepted by the finite-state automaton whose transition diagram is given in Figure 12.2.7.

Input: *n*, the length of the string (n = 0 designates the null string); $s_1 s_2 \cdots s_n$, the string Output: "Accept" if the string is accpted "Reject" if the string is not accepted

```
fsa(s, n) \{
state = 'E'
for i = 1 to n \{
if (state == 'E' \land s_i == 'a')
state = 'O'
if (state == 'O' \land s_i == 'a')
state = 'E'
\}
if (state == 'O')
return "Accept"
else
return "Reject"
```

- Definition
 - The finite-state automata A and A' are equivalent if Ac(A) = Ac(A').
- Example
 - Verify that the two finite-state automata of Figures 12.2.6 and 12.2.8 are equivalent.

- Definition
 - Let A be a finite set. A (formal) language L over A is a subset of A*, the set of all strings over A.
- Example
 - Let A = {a, b}. The set L of all strings over A containing an odd number of a's is a language over A. L is precisely the set of strings over A accepted by the finite-state automaton of Figure 12.2.7.

Definition

- A phrase-structure grammar (or, simply, grammar) *G* consists of
 - (a) A finite set N of nonterminal symbols
 - (b) A finite set T of terminal symbols where $N \cap T = \emptyset$
 - (c) A finite subset P of $[(N \cup 7)^* 7^*] \times (N \cup 7)^*$, called the set of productions

(d) A starting symbol $\sigma \in N$.

– We write $G = (N, T, P, \sigma)$.

• Note

– A production is usually written $A \rightarrow B$.

• Example

– Let

 $N = \{\sigma, S\},\$ $T = \{a, b\},\$ $P = \{\sigma \rightarrow b\sigma, \sigma \rightarrow aS, S \rightarrow bS, S \rightarrow b\}.$ $- \text{ Then } G = (N, T, P, \sigma) \text{ is a grammar.}$

- Definition
 - Let $G = (N, T, P, \sigma)$ be a grammar.
 - If $\alpha \rightarrow \beta$ is a production and $x\alpha y \in (N \cup 7)^*$, we say that $x\beta y$ is directly derivable from $x\alpha y$ and write $x\alpha y \Rightarrow x\beta y$.
 - If $\alpha_i \in (N \cup 7)^*$ for i = 1, ..., n, and α_{i+1} is directly derivable from α_i for i = 1, ..., n-1, we say that α_n is derivable from α_1 and write $\alpha_1 \Rightarrow \alpha_n$.
 - We call $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n$ the derivation of α_n (from α_1).
 - By convention, any element of $(N \cup 7)^*$ is derivable from itself.
 - The language generated by G, written L(G), consists of all strings over T derivable from σ .

- Examples
 - Determine L(G) where G is the grammar of the earlier example.
 - A Grammar for Integers
 - Backus normal form (or Backus-Naur form, BNF)
 - the nonterminal symbols typically begin with "<" and end with ">".
 - the production $S \rightarrow T$ is written S := T.
 - Productions of the form

$$S ::= T_1,$$

$$S ::= T_2,$$

...,

$$S ::= T_n$$

may be combined as $S ::= T_1 | T_2 | \cdots | T_n$.

- Definition
 - Let G be a grammar and let λ denote the null string.
 - (a) If every production is of the form $\alpha A\beta \rightarrow \alpha \delta\beta$, where $\alpha, \beta \in (N \cup 7)^*, A \in N, \delta \in (N \cup 7)^* - \{\lambda\}$, we call *G* a context-sensitive (or type 1) grammar.
 - (b) If every production is of the form $A \rightarrow \delta$, where $A \in N, \delta \in (N \cup 7)^*$, we call *G* a context-free (or type 2) grammar.
 - (c) If every production is of the form $A \rightarrow a$ or $A \rightarrow aB$ or $A \rightarrow \lambda$, where $A, B \in N, a \in T$, we call G a regular (or type 3) grammar.

Definition

– A language L is context-sensitive (respectively, context-free, regular) if there is a context-sensitive (respectively, context-free, regular) grammar G with L = L(G).

Definition

– Grammars G and G are equivalent if L(G) = L(G).

- Definition
 - A context-free interactive Lindenmayer grammar consists of
 - (a) A finite set *N* of nonterminal symbols
 - (b) A finite set *T* of terminal symbols where $N \cap T = \emptyset$
 - (c) A finite set *P* of productions $A \rightarrow B$, where $A \in N \cup T$ and $B \in (N \cup T)^*$

(d) A starting symbol $\sigma \in N$.

- Note
 - In a context-free interactive Lindenmayer grammar, to derive the string β from the string α , all symbols in α must be replaced simultaneously.

Summary

- Sequential Circuits and Finite-State Machines
- Finite-State Automata
- Languages and Grammars
- Nondeterministic
 Finite-State Automata
- Relationships Between Languages and Automata