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Sequential Circuits and Finite-
State Machines

• Note
– We assume that the state changes only at time t = 

0, 1, …

• Definitions
– A unit time delay accepts as input a bit xt at time t

and outputs xt-1, the bit received as input at time t
– 1. 

– The unit time delay is drawn as in Figure 12.1.1.

– A serial adder accepts as input two binary numbers.

• Example
– Serial-Adder Circuit
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Sequential Circuits and Finite-
State Machines

• Definition

– A finite-state machine M consists of

(a) A finite set I of input symbols.

(b) A finite set O of output symbols.

(c) A finite set S of states.

(d) A next-state function f from S  I into S.

(e) An output function g from S  I into O.

(f) An initial state   S.

– We write M = (I, O, S, f, g, ).
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Sequential Circuits and Finite-
State Machines

• Definition

– Let M = (I, O, S, f, g, ) be a finite-state 
machine. 

– The transition diagram of M is a digraph G
whose vertices are the members of S. 

• An arrow designates the initial state . 

• A directed edge (1, 2) exists in G if there exists 
an input i with f(1,i) = 2. In this case, if g(1,i) 
= o, the edge (1,2) is labeled i /o. 
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Sequential Circuits and Finite-
State Machines

• Definition

– Let M = (I, O, S, f, g, ) be a finite-state 
machine. An input string for M is a string 
over I. The string y1yn is the output string 
for M corresponding to the input string  = 
x1xn if there exist states 0,...,n  S with 

0 = 

i = f(i-1,xi) for i = 1, ..., n;

yi = g(i-1,xi) for i = 1, ..., n.
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Sequential Circuits and Finite-
State Machines

• Examples

– A Serial-Adder Finite-State Machine

– The SR Flip-Flop
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Finite-State Automata

• Definition
– A finite-state automaton

A = (I, O, S, f, g, ) 
is a finite-state machine in which the set of 
output symbols is {0, 1} and where the current 
state determines the last output. 

– Those states for which the last output was 1 are 
called accepting states.

• Note
– The transition diagram of a finite-state 

automaton is usually drawn with the accepting 
states in double circles and the output symbols 
omitted. 
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Finite-State Automata

• Examples

– Draw the transition diagram of the finite-
state machine A defined by the table. 

– Draw the transition diagram of the finite-
state automaton of Figure 12.2.3 as a 
transition diagram of a finite-state machine. 
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Finite-State Automata
• Note

– As an alternative to the earlier definition, we 
can regard a finite-state automaton A as 
consisting of
(1) A finite set I of input symbols

(2) A finite set S of states

(3) A next-state function f from S  I into S
(4) A subset A of S of accepting states

(5) An initial state   S.

– If we use this characterization, we write 

A = (I, S, f, A, ).
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Finite-State Automata

• Example
– Draw the transition diagram of the finite-state 

automaton 

A = (I, S, f, A, ), 

where 

I = {a, b}, 

S = {0, 1, 2}, 

A = {2}}, 

 = 0, 

with f given by the table. 
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Finite-State Automata

• Definition
– Let A = (I, S, f, A, ) be a finite-state automaton. 
– Let  = x1  xn be a string over I. 
– If there exist states 0, , n satisfying

(a) 0 = 
(b) f(i-1, xi) = i for i = 1, , n
(c) n  A,

we say that  is accepted by A. The null string is 
accepted if and only if   A. We let Ac(A) denote 
the set of strings accepted by A and we say that A
accepts Ac(A).

– Let  = x1  xn be a string over I. Define states 0, 
, n by conditions (a) and (b) above. We call the 
(directed) path (0, , n) the path representing  in 
A.
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Finite-State Automata

• Examples

– string acceptance

– Design a finite-state automaton that accepts 
precisely those strings over {a, b} that 
contain no a’s. 

– Design a finite-state automaton that accepts 
precisely those strings over {a, b} that 
contain an odd number of a’s. 
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Finite-State Automata
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Finite-State Automata

• Definition

– The finite-state automata A and A’ are 
equivalent if Ac(A) = Ac(A’). 

• Example

– Verify that the two finite-state automata of 
Figures 12.2.6 and 12.2.8 are equivalent. 
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Languages and Grammars

• Definition
– Let A be a finite set. A (formal) language L

over A is a subset of A*, the set of all strings 
over A. 

• Example
– Let A = {a, b}. The set L of all strings over A

containing an odd number of a’s is a 
language over A. L is precisely the set of 
strings over A accepted by the finite-state 
automaton of Figure 12.2.7.
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Languages and Grammars

• Definition
– A phrase-structure grammar (or, simply, 

grammar) G consists of
(a) A finite set N of nonterminal symbols

(b) A finite set T of terminal symbols where N  T = 

(c) A finite subset P of [(N  T)* - T*]  (N  T)*, called 
the set of productions

(d) A starting symbol   N.

– We write G = (N, T, P, ).

• Note
– A production is usually written A  B.
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Languages and Grammars

• Example

– Let 

N = {, S}, 

T = {a, b}, 

P = {  b,   aS, S  bS, S  b}. 

– Then G = (N, T, P, ) is a grammar.
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Languages and Grammars

• Definition
– Let G = (N, T, P, ) be a grammar.
– If    is a production and xy  (N  T)*, we say 

that xy is directly derivable from xy and write xy
 xy.

– If i  (N  T)* for i = 1, ..., n, and i+1 is directly 
derivable from i for i = 1, ..., n – 1, we say that n
is derivable from 1 and write 1  n.

– We call 1  2    n the derivation of n
(from 1). 

– By convention, any element of (N  T)* is derivable 
from itself. 

– The language generated by G, written L(G), consists 
of all strings over T derivable from .
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Languages and Grammars
• Examples

– Determine L(G) where G is the grammar of the 
earlier example.

– A Grammar for Integers
• Backus normal form (or Backus-Naur form, BNF)

– the nonterminal symbols typically begin with “<“ and end 
with “>”. 

– the production S  T is written S ::= T. 
– Productions of the form 

S ::= T1, 
S ::= T2, 
..., 
S ::= Tn

may be combined as S ::= T1 | T2 |  | Tn.
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Languages and Grammars

• Definition
– Let G be a grammar and let  denote the null 

string.
(a) If every production is of the form A  , 

where ,   (N  T)*, A  N,   (N  T)* - {}, we 
call G a context-sensitive (or type 1) grammar.

(b) If every production is of the form A  , where A 
N,   (N  T)*, we call G a context-free (or type 2) 
grammar.

(c) If every production is of the form A  a or A  aB
or A  , where A, B  N, a  T, we call G a regular
(or type 3) grammar. 
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Languages and Grammars

• Definition

– A language L is context-sensitive 
(respectively, context-free, regular) if there is 
a context-sensitive (respectively, context-free, 
regular) grammar G with L = L(G).

• Definition

– Grammars G and G’ are equivalent if L(G) = 
L(G’).
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Languages and Grammars

• Definition
– A context-free interactive Lindenmayer grammar

consists of
(a) A finite set N of nonterminal symbols

(b) A finite set T of terminal symbols where N  T = 

(c) A finite set P of productions A  B, where A  N  T
and B  (N  T)*

(d) A starting symbol   N.

• Note
– In a context-free interactive Lindenmayer grammar, 

to derive the string  from the string , all symbols 
in  must be replaced simultaneously.
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Languages and Grammars

• Definition
– Let G = (N, T, P, ) be a context-free interactive 

Lindenmayer grammar. 

– If  = x1xn and there are productions xi  i in P, 
for i = 1, ..., n, we write   1  n and say that 1

 n is directly derivable from . 

– If i+1 is directly derivable from i for i = 1, ..., n – 1, 
we say that n is derivable from 1 and write 1 
n. 

– We call 1  2    n the derivation of n
(from 1). The language generated by G, written 
L(G), consists of all strings over T derivable from .



25

Languages and Grammars

• Example

– The von Koch Snowflake

• N = {D}

• T = {d, +, -}

• P = {
D D-D++D-D

D d

++

- -
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Nondeterministic Finite-State 
Automata

• Theorem (FSA  Regular grammar)
– Let A be a finite-state automaton given as a 

transition diagram. Let  be the initial state. 

– Let T be the set of input symbols and let N be 
the set of states. Let P be the set of 
productions.

– S  xS’ if there is an edge labeled x from S to 
S’ and 

– S   if S is an accepting state. 

– Let G be the regular grammar G = (N, T, P, ). 

– Then the set of strings accepted by A is equal 
to L(G).
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Nondeterministic Finite-State 
Automata

• Example

– Write the regular grammar given by the 
finite-state automaton of Figure 12.2.7.
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Nondeterministic Finite-State 
Automata

• Example

– Construct a finite-state automaton for the 
regular grammar defined as follows.

• T = {a, b}, N = {, C}

• P = {  b,   aC, C  bC, C  b} 

• Starting symbol: 
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Nondeterministic Finite-State 
Automata

• Definition

– A nondeterministic finite-state automaton A
consists of 

(a) A finite set I of input symbols

(b) A finite set S of states

(c) A next-state function f from S  I into P(S)

(d) A subset A of S of accepting states

(e) An initial state   S.

– We write A = (I, S, f, A, ).
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Nondeterministic Finite-State 
Automata

• Definition
– Let A = (I, S, f, A, ) be a nondeterministic 

finite-state automaton. 
– The null string is accepted by A if and only if 
 A. 

– If  = x1xn is a nonnull string over I and there 
exist states 0, , n satisfying the following 
conditions:
(a) 0 = 
(b) i  f(i-1, xi) for i = 1, ..., n
(c) n  A, 

we say that  is accepted by A. 
– We let Ac(A) denote the set of strings accepted 

by A and we say that A accepts Ac(A).
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Nondeterministic Finite-State 
Automata

– If A and A’ are nondeterministic finite-state 
automata and Ac(A) = Ac(A’), we say that A
and A’ are equivalent.

– If  = x1xn is a string over I and there exist 
states 0, , n satisfying conditions (a) and 
(b), we call the path (0, , n) a path 
representing  in A. 
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Nondeterministic Finite-State 
Automata

• Theorem (RG  Nondeterministic FSA)
– Let G = (N, T, P, ) be a regular grammar. Let  

I = T, 

S = N  {F}, where F  N  T, 

f(S, x) = {S’ | S  xS’  P}  {F | S  x  P}, 

A = {F}  {S | S    P}.

– Then the nondeterministic finite-state 
automaton

A = (I, S, f, A, ) 

accepts precisely the string L(G). 



Summary

• Sequential Circuits and 
Finite-State Machines

• Finite-State Automata

• Languages and 
Grammars

• Nondeterministic 
Finite-State Automata

• Relationships Between 
Languages and 
Automata
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