Discrete Mathematics

CS204: Spring, 2008

Jong C. Park Computer Science Department KAIST

Today's Topics

Sequential Circuits and Finite-State Machines
Finite-State Automata
Languages and Grammars
Nondeterministic Finite-State Automata
Relationships Between Languages and Automata

AUTOMATA, GRAMMARS, AND LANGUAGES

Note

We assume that the state changes only at time t = 0, 1, ...

Definitions

- A unit time delay accepts as input a bit x_t at time t and outputs x_{t-1} , the bit received as input at time t 1.
- The unit time delay is drawn as in Figure 12.1.1.
- A serial adder accepts as input two binary numbers.

Example

Serial-Adder Circuit

Definition

- A finite-state machine M consists of
 - (a) A finite set *I* of input symbols.
 - (b) A finite set O of output symbols.
 - (c) A finite set *S* of states.
 - (d) A next-state function f from $S \times I$ into S.
 - (e) An output function g from $S \times I$ into O.
 - (f) An initial state $\sigma \in S$.
- We write $M = (I, O, S, f, g, \sigma)$.

Definition

- Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine.
- The transition diagram of M is a digraph G whose vertices are the members of S.
 - An arrow designates the initial state σ .
 - A directed edge (σ_1, σ_2) exists in G if there exists an input i with $f(\sigma_1, i) = \sigma_2$. In this case, if $g(\sigma_1, i) = o$, the edge (σ_1, σ_2) is labeled i / o.

Definition

– Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine. An input string for M is a string over I. The string $y_1 \cdots y_n$ is the output string for M corresponding to the input string $\alpha = x_1 \cdots x_n$ if there exist states $\sigma_0, ..., \sigma_n \in S$ with

$$\sigma_0 = \sigma$$
 $\sigma_i = f(\sigma_{i-1}, x_i) \text{ for } i = 1, ..., n,$
 $y_i = g(\sigma_{i-1}, x_i) \text{ for } i = 1, ..., n.$

- Examples
 - A Serial-Adder Finite-State Machine
 - The SR Flip-Flop

Definition

A finite-state automaton

$$A = (I, O, S, f, g, \sigma)$$

is a finite-state machine in which the set of output symbols is {0, 1} and where the current state determines the last output.

 Those states for which the last output was 1 are called accepting states.

Note

 The transition diagram of a finite-state automaton is usually drawn with the accepting states in double circles and the output symbols omitted.

Examples

- Draw the transition diagram of the finitestate machine A defined by the table.
- Draw the transition diagram of the finitestate automaton of Figure 12.2.3 as a transition diagram of a finite-state machine.

Note

- As an alternative to the earlier definition, we can regard a finite-state automaton A as consisting of
 - (1) A finite set *I* of input symbols
 - (2) A finite set *S* of states
 - (3) A next-state function f from $S \times I$ into S
 - (4) A subset A of S of accepting states
 - (5) An initial state $\sigma \in S$.
- If we use this characterization, we write $A = (I, S, f, A, \sigma)$.

Example

Draw the transition diagram of the finite-state automaton

$$A = (I, S, f, A, \sigma),$$

where

$$I = \{a, b\},\$$
 $S = \{\sigma_0, \sigma_1, \sigma_2\},\$
 $A = \{\sigma_2\}\},\$
 $\sigma = \sigma_0,\$

with f given by the table.

Definition

- Let $A = (I, S, f, A, \sigma)$ be a finite-state automaton.
- Let $\alpha = x_1 \cdots x_n$ be a string over *I*.
- If there exist states σ_0 , …, σ_n satisfying
 - (a) $\sigma_0 = \sigma$
 - (b) $f(\sigma_{i-1}, x_i) = \sigma_i$ for i = 1, ..., n
 - (c) $\sigma_n \in A$,

we say that α is accepted by A. The null string is accepted if and only if $\sigma \in A$. We let Ac(A) denote the set of strings accepted by A and we say that A accepts Ac(A).

– Let $\alpha = x_1 \cdots x_n$ be a string over I. Define states σ_0 , ..., σ_n by conditions (a) and (b) above. We call the (directed) path $(\sigma_0, \dots, \sigma_n)$ the path representing α in A.

Examples

- string acceptance
- Design a finite-state automaton that accepts precisely those strings over {a, b} that contain no a's.
- Design a finite-state automaton that accepts precisely those strings over {a, b} that contain an odd number of a's.

Algorithm 12.2.10: Determining whether a string over $\{a, b\}$ is accepted by the finite-state automaton whose transition diagram is given in Figure 12.2.7.

```
Input: n, the length of the string (n = 0 designates
          the null string); s_1 s_2 \cdots s_n, the string
Output: "Accept" if the string is accepted
          "Reject" if the string is not accepted
fsa(s,n) {
  state = 'E'
  for i = 1 to n {
     if (state == 'E' \wedge s_i == 'a')
       state = 'O'
     if (state == 'O' \land s_i == 'a')
       state = 'E'
  if (state == 'O')
     return "Accept"
  else
     return "Reject"
```

- Definition
 - The finite-state automata A and A' are equivalent if Ac(A) = Ac(A').
- Example
 - Verify that the two finite-state automata of Figures 12.2.6 and 12.2.8 are equivalent.

Definition

Let A be a finite set. A (formal) language L
 over A is a subset of A*, the set of all strings
 over A.

Example

- Let A = {a, b}. The set L of all strings over A containing an odd number of a's is a language over A. L is precisely the set of strings over A accepted by the finite-state automaton of Figure 12.2.7.

Definition

- A phrase-structure grammar (or, simply, grammar) G consists of
 - (a) A finite set N of nonterminal symbols
 - (b) A finite set T of terminal symbols where $N \cap T = \emptyset$
 - (c) A finite subset P of $[(N \cup 7)^* 7^*] \times (N \cup 7)^*$, called the set of productions
 - (d) A starting symbol $\sigma \in \mathcal{N}$.
- We write $G = (N, T, P, \sigma)$.

Note

– A production is usually written $A \rightarrow B$.

- Example
 - Let

$$N = \{\sigma, S\},\$$
 $T = \{a, b\},\$
 $P = \{\sigma \rightarrow b\sigma, \sigma \rightarrow aS, S \rightarrow bS, S \rightarrow b\}.$

- Then $G = (N, T, P, \sigma)$ is a grammar.

Definition

- Let $G = (N, T, P, \sigma)$ be a grammar.
- If $\alpha \to \beta$ is a production and $x\alpha y \in (N \cup 7)^*$, we say that $x\beta y$ is directly derivable from $x\alpha y$ and write $x\alpha y \Rightarrow x\beta y$.
- If $\alpha_i \in (N \cup 7)^*$ for i = 1, ..., n, and α_{i+1} is directly derivable from α_i for i = 1, ..., n-1, we say that α_n is derivable from α_1 and write $\alpha_1 \Rightarrow \alpha_n$.
- We call $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n$ the derivation of α_n (from α_1).
- By convention, any element of ($N \cup 7$)* is derivable from itself.
- The language generated by G, written L(G), consists of all strings over T derivable from σ .

- Examples
 - Determine L(G) where G is the grammar of the earlier example.
 - A Grammar for Integers
 - Backus normal form (or Backus-Naur form, BNF)
 - the nonterminal symbols typically begin with "<" and end with ">".
 - the production $S \rightarrow T$ is written S := T.
 - Productions of the form

$$S ::= T_1,$$

$$S ::= T_2,$$

$$...,$$

$$S ::= T_n$$

may be combined as $S := T_1 \mid T_2 \mid \cdots \mid T_n$

Definition

- Let G be a grammar and let λ denote the null string.
 - (a) If every production is of the form $\alpha A\beta \to \alpha\delta\beta$, where α , $\beta \in (N \cup 7)^*$, $A \in N$, $\delta \in (N \cup 7)^* \{\lambda\}$, we call G a context-sensitive (or type 1) grammar.
 - (b) If every production is of the form $A \to \delta$, where $A \in N$, $\delta \in (N \cup 7)^*$, we call G a context-free (or type 2) grammar.
 - (c) If every production is of the form $A \rightarrow a$ or $A \rightarrow aB$ or $A \rightarrow \lambda$, where $A, B \in N$, $a \in T$, we call G a regular (or type 3) grammar.

Definition

– A language L is context-sensitive (respectively, context-free, regular) if there is a context-sensitive (respectively, context-free, regular) grammar G with L = L(G).

Definition

- Grammars G and G are equivalent if L(G) = L(G).

Definition

- A context-free interactive Lindenmayer grammar consists of
 - (a) A finite set N of nonterminal symbols
 - (b) A finite set T of terminal symbols where $N \cap T = \emptyset$
 - (c) A finite set P of productions $A \rightarrow B$, where $A \in N \cup T$ and $B \in (N \cup T)^*$
 - (d) A starting symbol $\sigma \in \mathcal{N}$.

Note

– In a context-free interactive Lindenmayer grammar, to derive the string β from the string α , all symbols in α must be replaced simultaneously.

Definition

- Let $G = (N, T, P, \sigma)$ be a context-free interactive Lindenmayer grammar.
- If $\alpha = x_1 \cdots x_n$ and there are productions $x_i \to \beta_i$ in P_i for i = 1, ..., n, we write $\alpha \Rightarrow \beta_1 \cdots \beta_n$ and say that $\beta_1 \cdots \beta_n$ is directly derivable from α .
- If α_{i+1} is directly derivable from α_i for i=1,..., n-1, we say that α_n is derivable from α_1 and write $\alpha_1 \Rightarrow \alpha_n$.
- We call $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n$ the derivation of α_n (from α_1). The language generated by G, written L(G), consists of all strings over T derivable from σ .

- Example
 - The von Koch Snowflake

```
N = {D}
T = {d, +, -}
P = {
D → D-D++D-D
D → d
+ → +
```

 \rightarrow -

- Theorem (FSA → Regular grammar)
 - Let A be a finite-state automaton given as a transition diagram. Let σ be the initial state.
 - Let T be the set of input symbols and let N be the set of states. Let P be the set of productions.
 - $-S \rightarrow xS$ if there is an edge labeled x from S to S and
 - $-S \rightarrow \lambda$ if S is an accepting state.
 - Let G be the regular grammar $G = (N, T, P, \sigma)$.
 - Then the set of strings accepted by A is equal to L(G).

- Example
 - Write the regular grammar given by the finite-state automaton of Figure 12.2.7.

Example

- Construct a finite-state automaton for the regular grammar defined as follows.
 - $T = \{a, b\}, N = \{\sigma, C\}$
 - $P = \{\sigma \rightarrow b\sigma, \ \sigma \rightarrow aC, \ C \rightarrow bC, \ C \rightarrow b\}$
 - Starting symbol: σ

Definition

- A nondeterministic finite-state automaton A consists of
 - (a) A finite set I of input symbols
 - (b) A finite set S of states
 - (c) A next-state function f from $S \times I$ into P(S)
 - (d) A subset A of S of accepting states
 - (e) An initial state $\sigma \in S$.
- We write $A = (I, S, f, A, \sigma)$.

Definition

- Let $A = (I, S, f, A, \sigma)$ be a nondeterministic finite-state automaton.
- The null string is accepted by A if and only if $\sigma \in A$.
- If $\alpha = x_1 \cdots x_n$ is a nonnull string over I and there exist states σ_0 , ..., σ_n satisfying the following conditions:
 - (a) $\sigma_0 = \sigma$
 - (b) $\sigma_i \in f(\sigma_{i-1}, x_i)$ for i = 1, ..., n
 - (c) $\sigma_n \in A$,

we say that α is accepted by A.

– We let Ac(A) denote the set of strings accepted by A and we say that A accepts Ac(A).

- If A and A' are nondeterministic finite-state automata and Ac(A) = Ac(A'), we say that A and A' are equivalent.
- If $\alpha = x_1 \cdots x_n$ is a string over I and there exist states σ_0 , \cdots , σ_n satisfying conditions (a) and (b), we call the path $(\sigma_0, \dots, \sigma_n)$ a path representing σ in A.

- Theorem (RG → Nondeterministic FSA)
 - Let $G = (N, T, P, \sigma)$ be a regular grammar. Let I = T, $S = N \cup \{F\}$, where $F \notin N \cup T$, $f(S, x) = \{S \mid S \rightarrow xS \in P\} \cup \{F \mid S \rightarrow x \in P\}$, $A = \{F\} \cup \{S \mid S \rightarrow \lambda \in P\}$.
 - Then the nondeterministic finite-state automaton

$$A = (I, S, f, A, \sigma)$$

accepts precisely the string L(G).

Summary

- Sequential Circuits and Finite-State Machines
- Finite-State Automata
- Languages and Grammars
- Nondeterministic
 Finite-State Automata
- Relationships Between Languages and Automata