Today’s Topics
Sequential Circuits and Finite-State Machines
Finite-State Automata
Languages and Grammars
Nondeterministic Finite-State Automata
Relationships Between Languages and Automata

AUTOMATA, GRAMMARS, AND LANGUAGES
Sequential Circuits and Finite-State Machines

• Note
 – We assume that the state changes only at time $t = 0, 1, \ldots$

• Definitions
 – A unit time delay accepts as input a bit x_t at time t and outputs x_{t-1}, the bit received as input at time $t - 1$.
 – The unit time delay is drawn as in Figure 12.1.1.
 – A serial adder accepts as input two binary numbers.

• Example
 – Serial-Adder Circuit
Sequential Circuits and Finite-State Machines

• Definition
 – A finite-state machine M consists of
 (a) A finite set I of input symbols.
 (b) A finite set O of output symbols.
 (c) A finite set S of states.
 (d) A next-state function f from $S \times I$ into S.
 (e) An output function g from $S \times I$ into O.
 (f) An initial state $\sigma \in S$.
 – We write $M = (I, O, S, f, g, \sigma)$.
Sequential Circuits and Finite-State Machines

• Definition
 – Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine.
 – The transition diagram of M is a digraph G whose vertices are the members of S.
 • An arrow designates the initial state σ.
 • A directed edge (σ_1, σ_2) exists in G if there exists an input i with $f(\sigma_1, i) = \sigma_2$. In this case, if $g(\sigma_1, i) = o$, the edge (σ_1, σ_2) is labeled i/o.

Sequential Circuits and Finite-State Machines

• Definition

 – Let $M = (I, O, S, f, g, \sigma)$ be a finite-state machine. An **input string** for M is a string over I. The string $y_1\ldots y_n$ is the **output string** for M corresponding to the input string $\alpha = x_1\ldots x_n$ if there exist states $\sigma_0, \ldots, \sigma_n \in S$ with

 \[
 \begin{align*}
 \sigma_0 &= \sigma \\
 \sigma_i &= f(\sigma_{i-1}, x_i) \text{ for } i = 1, \ldots, n \\
 y_i &= g(\sigma_{i-1}, x_i) \text{ for } i = 1, \ldots, n.
 \end{align*}
 \]
Sequential Circuits and Finite-State Machines

• Examples
 – A Serial-Adder Finite-State Machine
 – The SR Flip-Flop
Finite-State Automata

• Definition
 – A finite-state automaton
 \[A = (I, O, S, f, g, \sigma) \]
 is a finite-state machine in which the set of output symbols is \{0, 1\} and where the current state determines the last output.
 – Those states for which the last output was 1 are called accepting states.

• Note
 – The transition diagram of a finite-state automaton is usually drawn with the accepting states in double circles and the output symbols omitted.
Finite-State Automata

• Examples
 – Draw the transition diagram of the finite-state machine A defined by the table.
 – Draw the transition diagram of the finite-state automaton of Figure 12.2.3 as a transition diagram of a finite-state machine.
Finite-State Automata

• Note
 – As an alternative to the earlier definition, we can regard a finite-state automaton A as consisting of
 (1) A finite set I of input symbols
 (2) A finite set S of states
 (3) A next-state function f from $S \times I$ into S
 (4) A subset A of S of accepting states
 (5) An initial state $\sigma \in S$.
 – If we use this characterization, we write
 $A = (I, S, f, A, \sigma)$.
Finite-State Automata

• Example
 – Draw the transition diagram of the finite-state automaton
 \[A = (I, S, f, A, \sigma), \]
 where
 \[I = \{a, b\}, \]
 \[S = \{\sigma_0, \sigma_1, \sigma_2\}, \]
 \[A = \{\sigma_2\}, \]
 \[\sigma = \sigma_0, \]
 with \(f \) given by the table.
Finite-State Automata

• Definition
 – Let $A = (I, S, f, A, \sigma)$ be a finite-state automaton.
 – Let $\alpha = x_1 \ldots x_n$ be a string over I.
 – If there exist states $\sigma_0, \ldots, \sigma_n$ satisfying

 (a) $\sigma_0 = \sigma$

 (b) $f(\sigma_{i-1}, x_i) = \sigma_i$ for $i = 1, \ldots, n$

 (c) $\sigma_n \in A$,

 we say that α is accepted by A. The null string is accepted if and only if $\sigma \in A$. We let $Ac(A)$ denote the set of strings accepted by A and we say that A accepts $Ac(A)$.
 – Let $\alpha = x_1 \ldots x_n$ be a string over I. Define states $\sigma_0, \ldots, \sigma_n$ by conditions (a) and (b) above. We call the (directed) path $(\sigma_0, \ldots, \sigma_n)$ the path representing α in A.
Finite-State Automata

• Examples
 – string acceptance
 – Design a finite-state automaton that accepts precisely those strings over \{a, b\} that contain no a’s.
 – Design a finite-state automaton that accepts precisely those strings over \{a, b\} that contain an odd number of a’s.
Finite-State Automata

Algorithm 12.2.10: Determining whether a string over \{a, b\} is accepted by the finite-state automaton whose transition diagram is given in Figure 12.2.7.

Input: n, the length of the string ($n = 0$ designates the null string); $s_1s_2 \cdots s_n$, the string

Output: “Accept” if the string is accepted
“Reject” if the string is not accepted

\[
\text{fsa}(s, n) \{
\text{state} = \text{‘E’} \hfill
\text{for } i = 1 \text{ to } n \{ \hfill
\text{if (state == ‘E’ && } s_i = \text{‘a’}) \hfill
\text{state} = \text{‘O’} \hfill
\text{if (state == ‘O’ && } s_i = \text{‘a’}) \hfill
\text{state} = \text{‘E’} \hfill
\}
\text{if (state == ‘O’)} \hfill
\text{return “Accept”} \hfill
\text{else} \hfill
\text{return “Reject”}
\}
\]
Finite-State Automata

• Definition
 – The finite-state automata A and A' are equivalent if $Ac(A) = Ac(A')$.

• Example
 – Verify that the two finite-state automata of Figures 12.2.6 and 12.2.8 are equivalent.
Languages and Grammars

• Definition
 – Let A be a finite set. A (formal) language L over A is a subset of A^*, the set of all strings over A.

• Example
 – Let $A = \{a, b\}$. The set L of all strings over A containing an odd number of a’s is a language over A. L is precisely the set of strings over A accepted by the finite-state automaton of Figure 12.2.7.
Languages and Grammars

• Definition
 – A phrase-structure grammar (or, simply, grammar) G consists of
 (a) A finite set N of nonterminal symbols
 (b) A finite set T of terminal symbols where $N \cap T = \emptyset$
 (c) A finite subset P of $[(N \cup T)^* - T^*] \times (N \cup T)^*$, called the set of productions
 (d) A starting symbol $\sigma \in N$.
 – We write $G = (N, T, P, \sigma)$.

• Note
 – A production is usually written $A \rightarrow B$.
Languages and Grammars

• Example
 – Let

 \[N = \{\sigma, S\}, \]
 \[T = \{a, b\}, \]
 \[P = \{\sigma \rightarrow b\sigma, \sigma \rightarrow aS, S \rightarrow bS, S \rightarrow b\}. \]
 – Then \(G = (N, T, P, \sigma) \) is a grammar.
Languages and Grammars

• Definition
 – Let $G = (\mathcal{N}, \mathcal{T}, P, \sigma)$ be a grammar.
 – If $\alpha \rightarrow \beta$ is a production and $x\alpha y \in (\mathcal{N} \cup \mathcal{T})^*$, we say that $x\beta y$ is directly derivable from $x\alpha y$ and write $x\alpha y \Rightarrow x\beta y$.
 – If $\alpha_i \in (\mathcal{N} \cup \mathcal{T})^*$ for $i = 1, \ldots, n$, and α_{i+1} is directly derivable from α_i for $i = 1, \ldots, n-1$, we say that α_n is derivable from α_1 and write $\alpha_1 \Rightarrow \alpha_n$.
 – We call $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n$ the derivation of α_n (from α_1).
 – By convention, any element of $(\mathcal{N} \cup \mathcal{T})^*$ is derivable from itself.
 – The language generated by G, written $L(G)$, consists of all strings over \mathcal{T} derivable from σ.
Languages and Grammars

• Examples
 – Determine $\mathcal{L}(G)$ where G is the grammar of the earlier example.
 – A Grammar for Integers
 • Backus normal form (or Backus-Naur form, BNF)
 – the nonterminal symbols typically begin with “<” and end with “>”.
 – the production $S \rightarrow T$ is written $S ::= T$.
 – Productions of the form
 \[
 S ::= T_1, \\
 S ::= T_2, \\
 \ldots, \\
 S ::= T_n
 \]
 may be combined as $S ::= T_1 | T_2 | \ldots | T_n$.

Languages and Grammars

• Definition
 – Let G be a grammar and let λ denote the null string.
 (a) If every production is of the form $\alpha A\beta \rightarrow \alpha \delta \beta$, where $\alpha, \beta \in (N \cup T)^*$, $A \in N$, $\delta \in (N \cup T)^* - \{\lambda\}$, we call G a context-sensitive (or type 1) grammar.
 (b) If every production is of the form $A \rightarrow \delta$, where $A \in N$, $\delta \in (N \cup T)^*$, we call G a context-free (or type 2) grammar.
 (c) If every production is of the form $A \rightarrow a$ or $A \rightarrow aB$ or $A \rightarrow \lambda$, where $A, B \in N$, $a \in T$, we call G a regular (or type 3) grammar.
Languages and Grammars

• Definition
 – A language L is context-sensitive (respectively, context-free, regular) if there is a context-sensitive (respectively, context-free, regular) grammar G with $L = L(G)$.

• Definition
 – Grammars G and G' are equivalent if $L(G) = L(G')$.
Languages and Grammars

• Definition
 – A context-free interactive Lindenmayer grammar consists of
 (a) A finite set N of nonterminal symbols
 (b) A finite set T of terminal symbols where $N \cap T = \emptyset$
 (c) A finite set P of productions $A \rightarrow B$, where $A \in N \cup T$
 and $B \in (N \cup T)^*$
 (d) A starting symbol $\sigma \in N$.

• Note
 – In a context-free interactive Lindenmayer grammar, to derive the string β from the string α, all symbols in α must be replaced simultaneously.
Languages and Grammars

• Definition
 – Let $G = (N, T, P, \sigma)$ be a context-free interactive Lindenmayer grammar.
 – If $\alpha = \chi_1 \cdots \chi_n$ and there are productions $\chi_i \rightarrow \beta_i$ in P, for $i = 1, \ldots, n$, we write $\alpha \Rightarrow \beta_1 \cdots \beta_n$ and say that $\beta_1 \cdots \beta_n$ is directly derivable from α.
 – If α_{i+1} is directly derivable from α_i for $i = 1, \ldots, n - 1$, we say that α_n is derivable from α_1 and write $\alpha_1 \Rightarrow \alpha_n$.
 – We call $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n$ the derivation of α_n (from α_1). The language generated by G, written $L(G)$, consists of all strings over T derivable from σ.
Languages and Grammars

• Example
 – The von Koch Snowflake
 • $N = \{D\}$
 • $T = \{d, +, -\}$
 • $P = \{
 D \rightarrow D-D++D-D
 D \rightarrow d
 + \rightarrow +
 - \rightarrow -
 \}$
Nondeterministic Finite-State Automata

• Theorem ($\text{FSA} \to \text{Regular grammar}$)
 – Let A be a finite-state automaton given as a transition diagram. Let σ be the initial state.
 – Let T be the set of input symbols and let N be the set of states. Let P be the set of productions.
 – $S \rightarrow xS$ if there is an edge labeled x from S to S' and
 – $S \rightarrow \lambda$ if S is an accepting state.
 – Let G be the regular grammar $G = (N, T, P, \sigma)$.
 – Then the set of strings accepted by A is equal to $L(G)$.
Nondeterministic Finite-State Automata

• Example
 – Write the regular grammar given by the finite-state automaton of Figure 12.2.7.
Nondeterministic Finite-State Automata

• Example
 – Construct a finite-state automaton for the regular grammar defined as follows.
 • $T = \{a, b\}$, $N = \{\sigma, C\}$
 • $P = \{\sigma \rightarrow b\sigma, \sigma \rightarrow aC, C \rightarrow bC, C \rightarrow b\}$
 • Starting symbol: σ
Nondeterministic Finite-State Automata

• Definition
 – A nondeterministic finite-state automaton \(A \) consists of
 (a) A finite set \(I \) of input symbols
 (b) A finite set \(S \) of states
 (c) A next-state function \(f \) from \(S \times I \) into \(P(S) \)
 (d) A subset \(A \) of \(S \) of accepting states
 (e) An initial state \(\sigma \in S \).
 – We write \(A = (I, S, f, A, \sigma) \).
Nondeterministic Finite-State Automata

• Definition
 – Let $A = (I, S, f, A, \sigma)$ be a nondeterministic finite-state automaton.
 – The null string is accepted by A if and only if $\sigma \in A$.
 – If $\alpha = x_1 \cdots x_n$ is a nonnull string over I and there exist states $\sigma_0, \ldots, \sigma_n$ satisfying the following conditions:
 (a) $\sigma_0 = \sigma$
 (b) $\sigma_i \in f(\sigma_{i-1}, x_i)$ for $i = 1, \ldots, n$
 (c) $\sigma_n \in A$
 we say that α is accepted by A.
 – We let $Ac(A)$ denote the set of strings accepted by A and we say that A accepts $Ac(A)$.
Nondeterministic Finite-State Automata

– If A and A' are nondeterministic finite-state automata and $Ac(A) = Ac(A')$, we say that A and A' are equivalent.

– If $\alpha = x_1 \cdots x_n$ is a string over I and there exist states $\sigma_0, \ldots, \sigma_n$ satisfying conditions (a) and (b), we call the path $(\sigma_0, \ldots, \sigma_n)$ a path representing σ in A.
Nondeterministic Finite-State Automata

• Theorem (RG \rightarrow \text{Nondeterministic FSA})

 \(-\) Let \(G = (N, T, P, \sigma) \) be a regular grammar. Let \(I = T, S = N \cup \{F\}, \) where \(F \notin N \cup T, \)

 \(f(S, x) = \{S \mid S \rightarrow xS \in P\} \cup \{F \mid S \rightarrow x \in P\}, \)

 \(A = \{A\} \cup \{S \mid S \rightarrow \lambda \in P\}. \)

 \(-\) Then the nondeterministic finite-state automaton

 \(A = (I, S, f, A, \sigma) \)

 accepts precisely the string \(L(G). \)
Relationships Between Languages and Automata

• Examples
 – Find a finite-state automaton equivalent to the nondeterministic finite-state automaton of Figure 12.4.2.
 – Find a finite-state automaton equivalent to the nondeterministic finite-state automaton of Figure 12.4.3.
Relationships Between Languages and Automata

• Theorem
 – Let \(A = (I, S, f, A, \sigma) \) be a nondeterministic finite-state automaton. Let
 (a) \(S = P(S) \)
 (b) \(I = I \)
 (c) \(\sigma' = \{\sigma\} \)
 (d) \(A' = \{X \subseteq S \mid X \cap A \neq \emptyset\} \)
 (e) \(f(X, x) = \emptyset \) if \(X = \emptyset \), \(\cup_{S \in X} f(S, x) \) if \(X \neq \emptyset \).
 – Then the finite-state automaton \(A' = (I, S, f, A', \sigma') \) is equivalent to \(A \).
Relationships Between Languages and Automata

• Theorem
 – A language L is regular if and only if there exists a finite-state automaton that accepts precisely the strings in L.
Summary

• Sequential Circuits and Finite-State Machines
• Finite-State Automata
• Languages and Grammars
• Nondeterministic Finite-State Automata
• Relationships Between Languages and Automata