
CS370

Symbolic Programming
Declarative Programming

LECTURE 10: Programming Style

Symbolic Programming
Declarative Programming

LECTURE 10: Programming Style

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Programming Style

General principles of good
programming
How to think about Prolog programs
Programming style
Debugging
Improving efficiency

3 Symbolic ProgrammingJong C. Park

General principles

Criteria
Correctness
User-friendliness
Efficiency
Readability
Modifiability
Robustness
Documentation

4 Symbolic ProgrammingJong C. Park

General principles

Top-down Stepwise Refinement
rough solutions: most relevant
succinct and simple: likely to be correct
small refinement steps: intellectually
manageable

5 Symbolic ProgrammingJong C. Park

How to think about Prolog programs

Use of recursion
boundary cases and general cases
Example
maplist(List,F,NewList)
maplist([],_,[]).
maplist([X|Tail],F,[NewX|NewTail]) :-

G =.. [F,X,NewX],
call(G),
maplist(Tail,F,NewTail).

?- maplist([2,6,5],square,Squares).

6 Symbolic ProgrammingJong C. Park

How to think about Prolog programs

Generalization
enables recursive formulation;
makes the original a special case.
Example
eightqueens(Pos)
nqueens(Pos,N)

- boundary case: N = 0
- general case: N > 0

eightqueens(Pos) :- nqueens(Pos,8).

7 Symbolic ProgrammingJong C. Park

How to think about Prolog programs

Using pictures
With pictorial representation, essential
relations are easily perceived.
Mapping to Prolog

nodes and arcs in graphs can be modeled by objects
and relations.
trees are mapped by structured objects
declarative meaning makes the order of translation
irrelevant

8 Symbolic ProgrammingJong C. Park

Programming style

Why follow stylistic conventions?
Some rules
short clauses short procedures
mnemonic names layout of the programs
consistent stylistic conventions
cut and not should be used with much care
assert/retract with much care
semicolon

9 Symbolic ProgrammingJong C. Park

Programming style

Tabular organization
for long procedures

Clear structure
Incrementality
Modification

Commenting

10 Symbolic ProgrammingJong C. Park

Debugging

Principle of debugging
Test smaller units first.

Debugging aids
trace
notrace
spy(P)
nospy(P)

11 Symbolic ProgrammingJong C. Park

Improving Efficiency

Factors
execution time
space requirements
the time for program development
frequency of use

12 Symbolic ProgrammingJong C. Park

Improving Efficiency

Areas of successful Prolog
applications

symbolic solutions for equations, planning,
and databases
general problem solving, prototyping
implementation of programming languages
discrete and qualitative simulation
architectural design, machine learning
natural language understanding, expert

systems

13 Symbolic ProgrammingJong C. Park

Improving Efficiency

Improving the efficiency of an eight
queens program

member(Y,[1,2,3,4,5,6,7,8]).

member(Y,[1,5,2,6,3,7,4,8]).

14 Symbolic ProgrammingJong C. Park

Improving Efficiency

Map colouring program
The goal is to assign each country in a given map one
of four given colours such that no two neighbouring
countries are painted with the same colour.

A map is specified by the neighbor relation
ngb(Country, Neighbours)

ngb(andorra,[france,spain]).
ngb(austria, [czech_republic,germany,hungary,italy,

liechtenstein,slovakia,slovenia,switzerland])
Let a solution be represented as a list of pairs of the
form: Country/Colour

[albania/C1,andorra/C2,austria/C3,...]

15 Symbolic ProgrammingJong C. Park

Improving Efficiency

Map colouring program
Define the predicate
colours(Country_colour_list)
Assume the colors yellow, blue, red, and
green.
colours([]).
colours([Country/Colour|Rest]) :- colours(Rest),

member(Colour,[yellow,blue,red,green]),
not(member(Country1/Colour,Rest),

neighbor(Country,Country1)).
neighbor(Country,Country1) :-

ngb(Country,Neighbours),
member(Country1,Neighbours).

16 Symbolic ProgrammingJong C. Park

Improving Efficiency

Map colouring program
Inefficient

if there is a large number of countries, such as
Europe.

country(C) :- ngb(C,_).

?- setof(Cntry/Colour,country(Cntry),CountryColourList),
colours(CountryColourList).

17 Symbolic ProgrammingJong C. Park

Improving Efficiency

Map colouring program
makelist(List) :- collect([germany],[],List).
collect([],Closed,Closed). % no more candidates
collect([X|Open],Closed,List) :-

member(X,Closed), !, % X is already collected
collect(Open,Closed,List).

collect([X|Open],Closed,List) :-
ngb(X,Ngbs),
conc(Ngbs,Open,Open1),
collect(Open1,[X|Closed],List).

18 Symbolic ProgrammingJong C. Park

Improving Efficiency

List concatenation
Simple concatenation
conc([],L,L).
conc([X|L1],L2,[X|L3]) :- conc(L1,L2,L3).
?- conc([a,b,c],[d,e],L).
conc([a,b,c],[d,e],L).
conc([b,c],[d,e],L')
conc([c],[d,e],L'')
conc([],[d,e],L''')
true

19 Symbolic ProgrammingJong C. Park

Improving Efficiency

List concatenation
Use of difference lists
[a,b,c] as [a,b,c,d,e]-[d,e],

[a,b,c]-[],
[a,b,c,d,e|T]-[d,e|T], ...

concat(A1-Z1,Z1-Z2,A1-Z2).
?- concat([a,b,c|T1]-T1,[d,e|T2]-T2,L).
T1 = [d,e|T2]
L = [a,b,c,d,e|T2]-T2

20 Symbolic ProgrammingJong C. Park

Improving Efficiency

Last call optimization and
accumulators

Use tail recursion: sumlist(List,Sum)
% without tail recursion
sumlist([], 0).
sumlist([X|Rest],Sum) :- sumlist(Rest,Sum0),

Sum is X + Sum0.
% with tail recursion
sumlist(List,Sum) :- sumlist(List,0,Sum).
sumlist([],Sum,Sum).
sumlist([First|Rest],PartialSum,TotalSum) :-

NewPartialSum is PartialSum + First,
sumlist(Rest,NewPartialSum,TotalSum).

21 Symbolic ProgrammingJong C. Park

Improving Efficiency

Last call optimization and
accumulators

Use tail recursion with an accumulator
% reverse(List,ReversedList).
reverse([],[]).
reverse([X|Rest],Reversed) :- reverse(Rest,RevRest),

conc(RevRest,[X],Reversed).
% with an accumulator
reverse(List,Reversed) :- reverse(List,[],Reversed).
reverse([],Reversed,Reversed).
reverse([X|Rest],PartReversed,TotalReversed) :-

reverse(Rest,[X|PartReversed],TotalReversed).

22 Symbolic ProgrammingJong C. Park

Improving Efficiency

Simulating arrays with arg
direct indexing with arg and functor
functor(A,f,100) gives rise to A = f(_,_,_,...,_).
A[60] := 1 can be done by arg(60,A,1).
X := A[60] corresponds to arg(60,A,X).

updating the values
several possibilities

23 Symbolic ProgrammingJong C. Park

Improving Efficiency

Asserting derived facts: fib(N,F)
1, 1, 2, 3, 5, 8, 13, ...
fib(1,1).
fib(2,1).
fib(N,F) :- N>2, N1 is N-1, fib(N1,F1),

N2 is N-2, fib(N2,F2), F is F1+F2.

?- fib(6,F).

24 Symbolic ProgrammingJong C. Park

Improving Efficiency

Asserting derived facts:
fib2(N,F)

fib2(1,1).
fib2(2,1).
fib2(N,F) :- N>2, N1 is N-1,

fib2(N1,F1), N2 is N-2,
fib2(N2,F2), F is F1+F2,
asserta(fib2(N,F)).

25 Symbolic ProgrammingJong C. Park

Improving Efficiency

Asserting derived facts:
fib3(N,F)

fib3(N,F) :- forwardfib(2,N,1,1,F).
forwardfib(M,N,F1,F2,F2) :- M >= N.
forwardfib(M,N,F1,F2,F) :-

M<N, NextM is M+1,
NextF2 is F1+F2, forwardfib(NextM,N,F2,NextF2,F).

26 Symbolic ProgrammingJong C. Park

Summary

General principles of good
programming
How to think about Prolog programs
Programming style
Debugging
Improving efficiency

