
CS370

Symbolic Programming
Declarative Programming

LECTURE 12: Basic Problem-Solving Strategies

Symbolic Programming
Declarative Programming

LECTURE 12: Basic Problem-Solving Strategies

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Basic Problem-Solving Strategies

Introductory concepts and examples
Depth-first search and iterative
deepening
Breadth-first search
Analysis of basic search techniques

3 Symbolic ProgrammingJong C. Park

Introductory concepts and examples

Two types of concept
problem situations
legal moves, or actions

4 Symbolic ProgrammingJong C. Park

Introductory concepts and examples

a state space
a start node and a goal condition (goal nodes)

5 Symbolic ProgrammingJong C. Park

An eight puzzle

Introductory concepts and examples

6 Symbolic ProgrammingJong C. Park

State Space
Represented by relations

s(X,Y)
s(X,Y,Cost)

Represented
explicitly by a set of facts, or
implicitly by stating the rules for computing the
successor nodes of a given node

Introductory concepts and examples

7 Symbolic ProgrammingJong C. Park

A problem situation should be
represented

in a compact way, and
in a way that enables efficient execution of
operations required

An example representation
the block manipulation problem as a list of
stacks
[[c,a,b],[],[]], [[a,b,c],[],[]],

[[],[a,b,c],[]],[[],[],[a,b,c]]

Introductory concepts and examples

8 Symbolic ProgrammingJong C. Park

Depth-first search and iterative
deepening

9 Symbolic ProgrammingJong C. Park

Depth-first search and iterative
deepening

Depth-first search
To find a solution path Sol from a given node
N to some goal node:

N is a goal node, or
There is a successor node N1 of N such that there is
a path Sol1 from N1 to a goal node.

solve(N,[N]) :- goal(N).
solve(N,[N|Sol1]) :- s(N,N1), solve(N1,Sol1).
?- solve(a,Sol).

10 Symbolic ProgrammingJong C. Park

Depth-first search and iterative
deepening

Problems of DFS
Cycle

11 Symbolic ProgrammingJong C. Park

Depth-first search and iterative
deepening

Problems of DFS
Cycle: Detecting Cycles

depthfirst(Path,Node,Solution)
solve(Node,Solution) :-

depthfirst([],Node,Solution).
depthfirst(Path,Node,[Node|Path]) :-

goal(Node).
depthfirst(Path,Node,Sol) :-

s(Node,Node1),
not member(Node1,Path),
depthfirst([Node|Path],Node1,Sol).

12 Symbolic ProgrammingJong C. Park

Depth-first search and iterative
deepening

Problems of DFS
Infinite non-cyclic branches

depthfirst2(Node,Solution,Maxdepth)
depthfirst2(Node,[Node],_) :- goal(Node).
depthfirst2(Node,[Node|Sol],Maxdepth) :-

Maxdepth > 0,
s(Node,Node1),
Max1 is Maxdepth - 1,
depthfirst2(Node1,Sol,Max1).

13 Symbolic ProgrammingJong C. Park

Depth-first search and iterative
deepening

Enhancing DFS
Iterative deepening

%path(Node1,Node2,Path)

path(Node,Node,[Node]).
path(FirstNode,LastNode,[LastNode|Path]) :-
path(FirstNode,OneButLast,Path),
s(OneButLast,LastNode),
not member(LastNode,Path).

?- path(a,Last,Path).
Last = a Last = b Last = c Last = d
Path = [a]; Path = [b,a]; Path = [c,a]; Path = [d,b,a];

14 Symbolic ProgrammingJong C. Park

Depth-first search and iterative
deepening

Iterative deepening
path(Node,Node,[Node]).
path(FirstNode,LastNode,[LastNode|Path]) :-
path(FirstNode,OneButLast,Path),
s(OneButLast,LastNode),
not member(LastNode,Path).

depthfirstiterativedeepening(Node,Solution) :-
path(Node,GoalNode,Solution),
goal(GoalNode).

15 Symbolic ProgrammingJong C. Park

Breadth-first search

16 Symbolic ProgrammingJong C. Park

Breadth-first search

Breadth-first search
Given a set of candidate paths

if the first path contains a goal node as its head
then this is a solution of the problem,
otherwise

remove the first path from the candidate set and
generate the set of all possible one-step
extensions of this path, adding this set of
extensions at the end of the candidate set, and
execute breadth-first search on this updated set.

17 Symbolic ProgrammingJong C. Park

Breadth-first search

Implementation
solve(Start,Solution) :- bfirst([[Start]],Solution).
bfirst([[Node|Path]|_],[Node|Path]) :- goal(Node).
bfirst([Path|Paths],Solution) :-

extend(Path,NewPaths),
conc(Paths,NewPaths,Paths1),
bfirst(Paths1,Solution).

extend([Node|Path],NewPaths) :-
bagof([NewNode,Node|Path], (s(Node,NewNode),
not member(NewNode,[Node|Path])),NewPaths),

!.
extend(Path,[]).

18 Symbolic ProgrammingJong C. Park

Breadth-first search

A more efficient implementation
solve(Start, Solution) :-
breadthfirst([[Start] | Z]-Z, Solution).

breadthfirst([[Node | Path] | _]-_, [Node | Path]) :-
goal(Node).

breadthfirst([Path | Paths]-Z, Solution) :-
extend(Path, NewPaths),
conc(NewPaths, Z1, Z),
Paths \== Z1,
breadthfirst(Paths – Z1, Solution).

19 Symbolic ProgrammingJong C. Park

Analysis of basic search techniques

20 Symbolic ProgrammingJong C. Park

Analysis of basic search techniques

Pros and cons of search techniques
Breadth-first
Depth-first
Iterative deepening
Bidirectional: breadth-first in both directions

21 Symbolic ProgrammingJong C. Park

Summary

Introductory concepts and examples
Depth-first search and iterative
deepening
Breadth-first search
Analysis of basic search techniques

