
CS370

Symbolic Programming
Declarative Programming

LECTURE 13: Best-First Heuristic Search

Symbolic Programming
Declarative Programming

LECTURE 13: Best-First Heuristic Search

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Best-First Heuristic Search

Best-first search
Best-first search applied to the eight
puzzle
Best-first search applied to scheduling
Space-saving techniques for best-first
search

3 Symbolic ProgrammingJong C. Park

Best-first search

Best-first search
Refinement of a breadth-first search program
Use heuristic estimate for candidate paths
Always expand the best candidate path
c: a cost function for the arcs

c(n,n')

f: a heuristic estimator function for the nodes
f(n): the "difficulty" of node n

4 Symbolic ProgrammingJong C. Park

Best-first search

f(n) = g(n) + h(n)

g(n): an estimate of the cost
of an optimal path from
s to n

h(n): an estimate of the cost
of an optimal path from
n to t

5 Symbolic ProgrammingJong C. Park

Best-first search

Use an activate-deactivate
mechanism for multiple competing
processes

Each process for a candidate path explores its
own subtree.
New subprocesses are created on alternatives.
Only one process is active at a time.
The active process is assigned some budget.

6 Symbolic ProgrammingJong C. Park

Best-first search

Example
The shortest route
between two cities

start city s
goal city t
straight-line distance
for h(n)

f(X) = g(X) + dist(X,t)

7 Symbolic ProgrammingJong C. Park

Best-first search

8 Symbolic ProgrammingJong C. Park

Best-first search

Implementation
l(N,F/G): a single node tree (a leaf)

N is a node in the state space
G is g(N) and F is f(N) = G + h(N)

t(N,F/G,Subs): a tree with non-empty
subtrees

N is the root of the tree
Subs is a list of its subtrees
G is g(N); F is the updated f-value of N;
Subs is ordered according to increasing

f-values of the subtrees

9 Symbolic ProgrammingJong C. Park

Best-first search

t(s,7/0,[l(a,7/2),l(e,9/2)])

(after s is expanded)

t(s,9/0,[l(e,9/2),t(a,10/2,
[t(b,10/4,[l(c,10/6)])])])

(after b is expanded)

10 Symbolic ProgrammingJong C. Park

Best-first search

Implementation
expand(P,Tree,Bound,Tre
e1,Solved,Solution)

P: Path between the start node
and Tree
Tree: Current search (sub)tree
Bound: f-limit for expansion of
Tree
Tree1: Tree expanded within
Bound
Solved: Indicator whose value
is 'yes', 'no', 'never‘
Solution: A solution path from
the start node 'through Tree1'
to a goal node within Bound (if
it exists)

11 Symbolic ProgrammingJong C. Park

Best-first search

Implementation
bestfirst(Start, Solution) :-

expand([],l(Start,0/0),9999,_,yes,Solution).
expand(P,l(N,_),_,_,yes,[N|P]) :- goal(N).
expand(P,l(N,F/G),Bound,Tree1,Solved,Sol) :-

F =< Bound,
(bagof(M/C,(s(N,M,C),not member(M,P)),Succ),
!, succlist(G,Succ,Ts), bestf(Ts,F1),
expand(P,t(N,F1/G,Ts),Bound,Tree1,Solved,Sol)
; Solved = never).

expand(P,t(N,F/G,[T|Ts]),Bound,Tree1,Solved,Sol) :-
F =< Bound, bestf(Ts,BF), min(Bound,BF,Bound1),
expand([N|P],T,Bound1,T1,Solved1,Sol),
continue(P,t(N,F/G,[T1|Ts]),Bound,Tree1,Solved1,Solv
ed,Sol).

expand(_,t(_,_,[]),_,_,never,_) :- !.
expand(_,Tree,Bound,Tree,no,_) :- f(Tree,F), F > Bound.

12 Symbolic ProgrammingJong C. Park

Best-first search

Admissibility of a search algorithm
Always produces an optimal solution (i.e. a

minimal cost path) when a solution exists
The previous implementation, which produces all
solutions through backtracking, can be considered
admissible if the first solution found is optimal.
Let h*(n) denote the cost of an optimal path from n
to a goal node.
An A* algorithm that uses a heuristic function h such
that for all nodes n in the state space h(n) <= h*(n)
is admissible.

13 Symbolic ProgrammingJong C. Park

Best-first search
applied to the eight puzzle

Problem
goal

Problem-specific predicates
s(Node,Node1,Cost)
goal(Node)
h(Node,H)

567

48

321

14 Symbolic ProgrammingJong C. Park

Best-first search
applied to the eight puzzle

567

48

321

Goal situation
goal([2/2, 1/3, 2/3, 3/3, 3/2, 3/1, 2/1, 1/1,

1/2]).

1 2 3

3

2

1

15 Symbolic ProgrammingJong C. Park

Best-first search
applied to the eight puzzle

Heuristic estimate H
mandist(S1,S2,D): Manhattan distance
totdist: the total distance of the eight tiles in

Pos from their home squares

567

48

321

16 Symbolic ProgrammingJong C. Park

Best-first search
applied to the eight puzzle

Heuristic estimate H
seq: the sequence score that measures

the degree to which the tiles are already
ordered in the current position with
respect to the order required in the goal.

567

48

321

17 Symbolic ProgrammingJong C. Park

Best-first search
applied to the eight puzzle

h(Pos,H)
H = totdist
H = totdist + 3*seq

567

48

321

18 Symbolic ProgrammingJong C. Park

Best-first search
applied to the eight puzzle

Implementation
s([Empty|Tiles],[Tile|Tiles1],1) :-

swap(Empty,Tile,Tiles,Tiles1).
swap(Empty,Tile,[Tile|Ts],[Empty|Ts]) :- mandist(Empty,Tile,1).
swap(Empty,Tile,[T1|Ts],[T1|Ts1]) :- swap(Empty,Tile,Ts,Ts1).
mandist(X/Y,X1/Y1,D) :- dif(X,X1,Dx), dif(Y,Y1,Dy), D is Dx+Dy.
dif(A,B,D) :- D is A-B, D >= 0, ! ; D is B-A.
h([Empty|Tiles],H) :-

goal([Empty1 | GoalSquares]),
totdist(Tiles,GoalSquares,D), seq(Tiles,S), H is D+3*S.

totdist([],[],0).
totdist([Tile|Tiles],[Square|Squares],D) :-

mandist(Tile,Square,D1), totdist(Tiles,Squares,D2),
D is D1+D2.

19 Symbolic ProgrammingJong C. Park

Best-first search
applied to scheduling

task-scheduling problem
Given

a collection of tasks t1, t2, ... with predefined
execution times and a precedence relation
a set of m identical processors, where any task can
be executed on any processor and each processor
can only execute one task at a time

Goal
minimize the finishing time over all permissible
schedules

20 Symbolic ProgrammingJong C. Park

Best-first search
applied to scheduling

21 Symbolic ProgrammingJong C. Park

Space-saving techniques

Time and space complexity of A*
Heuristic guidance results in the reduction of
effective branching of search.
The order of the complexity of A* is still
exponential in the depth of search, w.r.t. both
time and space.

Why?
It maintains all the generated nodes in the
memory.

Which is more costly: space or time?
In most practical situations space is more critical.
two space-saving techniques

IDA* (iterative deepening A*)
RBFS (recursive best-first search)

22 Symbolic ProgrammingJong C. Park

Space-saving techniques

IDA* - iterative deepening A*
In IDA*, the successive depth-first searches
are bounded by the current limit in the values
of the nodes (heuristic f-values of the nodes).
the evaluation function f

How good f is depends on how many nodes have
equal f-values.

The case becomes favourable when there are
many nodes with equal f-values. Otherwise quite
bad.
Why?

Each successive depth-first search explores
many new nodes, more than the number of
regenerated nodes. So...

23 Symbolic ProgrammingJong C. Park

Space-saving techniques

IDA* - iterative deepening A*
Properties of IDA*

acceptability of the overheads of repeated searches
addmissibility

If h is admissible (h(N) <= h*(N) for all N), then
IDA* is guaranteed to find an optimal solution.

It does not guarantee that the nodes are explored in
the best-first order (i.e. the order of increasing f-
values).

Why?

24 Symbolic ProgrammingJong C. Park

Space-saving techniques

RBFS - recursive best-first search
Unlike A*, RBFS only keeps the current
search path and the sibling nodes along this
path.

25 Symbolic ProgrammingJong C. Park

Space-saving techniques

RBFS - recursive best-first search

26 Symbolic ProgrammingJong C. Park

Space-saving techniques

RBFS - recursive best-first search

27 Symbolic ProgrammingJong C. Park

Space-saving techniques

RBFS - recursive best-first search
Characteristics

The space complexity is linear in the depth of search,
at the expense of the time for regenerating already
generated nodes.
It expands the nodes in the best-first order.

28 Symbolic ProgrammingJong C. Park

Summary

Best-first search
Best-first search applied to the eight
puzzle
Best-first search applied to
scheduling
Space-saving techniques for best-
first search

