CS370

Symbolic Programming Declarative Programming

LECTURE 13: Best-First Heuristic Search

Jong C. Park park@cs.kaist.ac.kr

Computer Science Department Korea Advanced Institute of Science and Technology http://nlp.kaist.ac.kr/~cs370

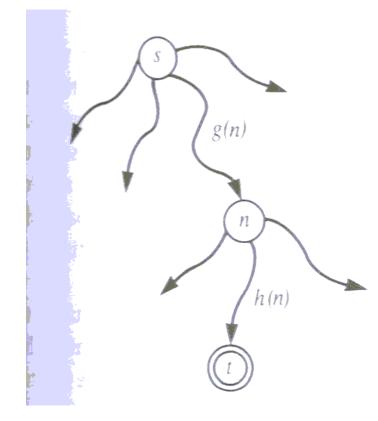
Best-First Heuristic Search

OBest-first search

- Best-first search applied to the eight puzzle
- OBest-first search applied to scheduling
- Space-saving techniques for best-first search

OBest-first search

- Refinement of a breadth-first search program
- Use heuristic estimate for candidate paths
- Always expand the best candidate path
- c: a cost function for the arcs
 - c(n,n')
- f: a heuristic estimator function for the nodes
 - f(n): the "difficulty" of node n



f(n) = g(n) + h(n)

g(n): an estimate of the cost of an optimal path from s to n h(n): an estimate of the cost of an optimal path from n to t

Our of the second se

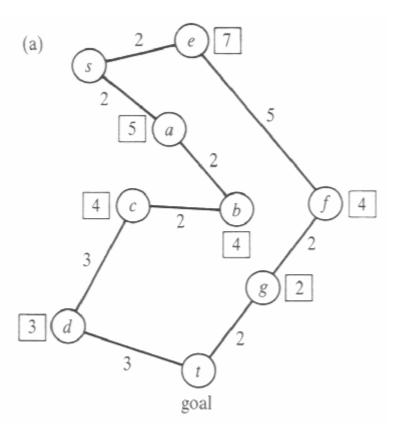
Best-first search

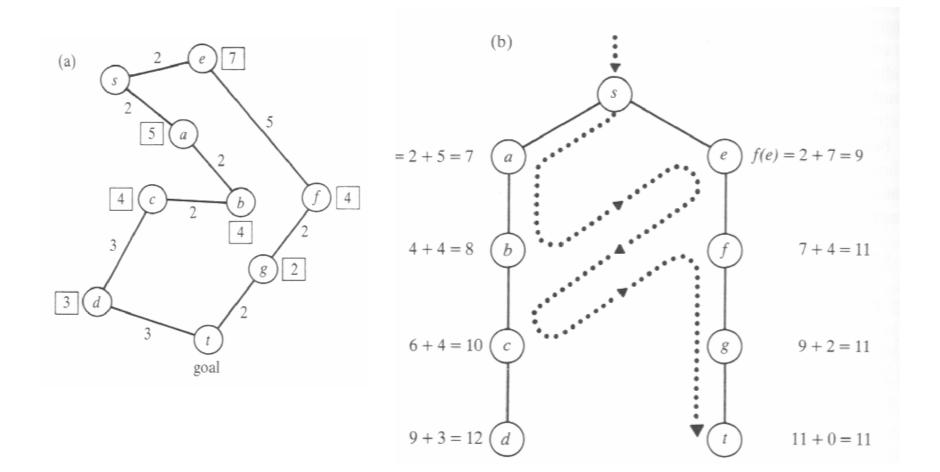
- Each process for a candidate path explores its own subtree.
- New subprocesses are created on alternatives.
- Only one process is active at a time.
- The active process is assigned some budget.

⊙Example

- The shortest route between two cities
 - start city s
 - goal city t
 - straight-line distance for h(n)

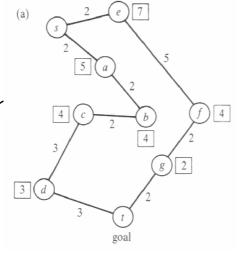
f(X) = g(X) + dist(X,t)

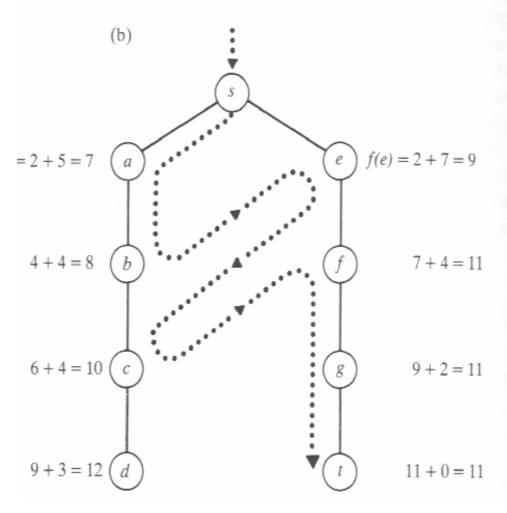




OImplementation

- I(N,F/G): a single node tree (a leaf)
 - N is a node in the state space
 - G is g(N) and F is f(N) = G + h(N)
- t(N,F/G,Subs): a tree with non-empty subtrees
 - N is the root of the tree
 - Subs is a list of its subtrees
 - G is g(N); F is the updated f-value of
 - Subs is ordered according to increasir f-values of the subtrees





t(s,7/0,[l(a,7/2),l(e,9/2)])

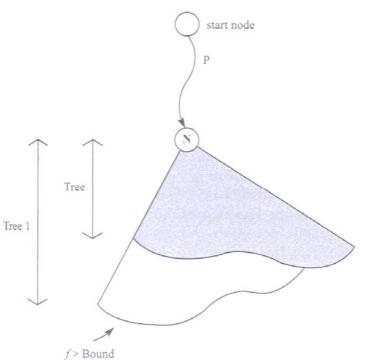
(after s is expanded)

t(s,9/0,[l(e,9/2),t(a,10/2, [t(b,10/4,[l(c,10/6)])])]) (after b is expanded)

Jong C. Park

• Implementation

- expand(P,Tree,Bound,Tre e1,Solved,Solution)
 - P: Path between the start nod and Tree
 - Tree: Current search (sub)tree
 - Bound: f-limit for expansion o Tree
 - Tree1: Tree expanded within Bound
 - Solved: Indicator whose value is 'yes', 'no', 'never'
 - Solution: A solution path from the start node 'through Tree1' to a goal node within Bound (i it exists)



Implementation

bestfirst(Start, Solution) :expand([],I(Start,0/0),9999,_,yes,Solution). expand(P,I(N,), , yes, [N|P]) := goal(N).expand(P,I(N,F/G),Bound,Tree1,Solved,Sol) :-F = < Bound.(bagof(M/C,(s(N,M,C),not member(M,P)),Succ), !, succlist(G,Succ,Ts), bestf(Ts,F1), expand(P,t(N,F1/G,Ts),Bound,Tree1,Solved,Sol) ; Solved = never). expand(P,t(N,F/G,[T|Ts]),Bound,Tree1,Solved,Sol) :- $F = \langle Bound, bestf(Ts, BF), min(Bound, BF, Bound1), \rangle$ expand([N|P],T,Bound1,T1,Solved1,Sol), continue(P,t(N,F/G,[T1|Ts]),Bound,Tree1,Solved1,Solv ed, Sol). expand(_,t(_,_,[]),_,_,never,_) :- !. $expand(_,Tree,Bound,Tree,no,_) := f(Tree,F), F > Bound.$

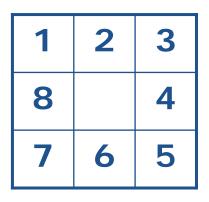
Jong C. Park

• Admissibility of a search algorithm

- Always produces an optimal solution (i.e. a minimal cost path) when a solution exists
 - The previous implementation, which produces all solutions through backtracking, can be considered admissible if the first solution found is optimal.
 - Let h*(n) denote the cost of an optimal path from n to a goal node.
 - An A* algorithm that uses a heuristic function h such that for all nodes n in the state space h(n) <= h*(n) is admissible.

• Problem

goal

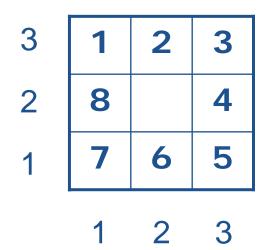


OProblem-specific predicates

- s(Node,Node1,Cost)
- goal(Node)
- h(Node,H)

• Goal situation

goal([2/2, 1/3, 2/3, 3/3, 3/2, 3/1, 2/1, 1/1, 1/2]).

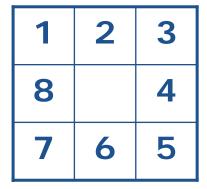


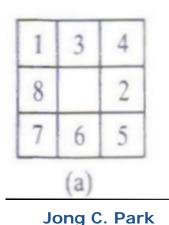
OHeuristic estimate H

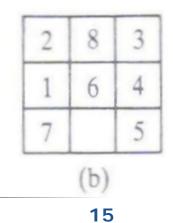
mandist(S1,S2,D): Manhattan distance

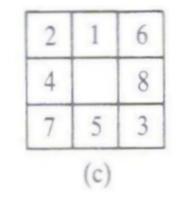
totdist: the total distance of the eight tiles in

Pos from their home squares



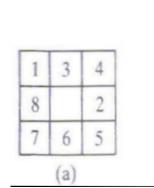


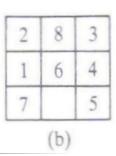


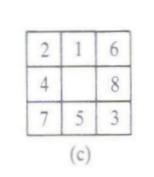


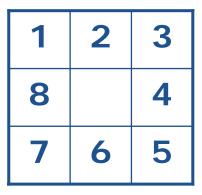
OHeuristic estimate H

seq: the sequence score that measures the degree to which the tiles are already ordered in the current position with respect to the order required in the goal.





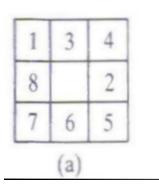


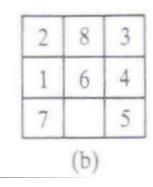


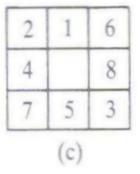
⊙h(Pos,H)

- H = totdist
- H = totdist + 3*seq

1	2	3
8		4
7	6	5







OImplementation

```
s([Empty|Tiles],[Tile|Tiles1],1) :-
  swap(Empty,Tile,Tiles,Tiles1).
swap(Empty,Tile,[Tile|Ts],[Empty|Ts]) :- mandist(Empty,Tile,1).
swap(Empty,Tile,[T1|Ts],[T1|Ts1]) :- swap(Empty,Tile,Ts,Ts1).
mandist(X/Y,X1/Y1,D) :- dif(X,X1,Dx), dif(Y,Y1,Dy), D is Dx+Dy.
dif(A,B,D) := D \text{ is } A-B, D \ge 0, !; D \text{ is } B-A.
h([Empty|Tiles],H) :-
  goal([Empty1 | GoalSquares]),
  totdist(Tiles,GoalSquares,D), seq(Tiles,S), H is D+3*S.
totdist([],[],0).
totdist([Tile|Tiles],[Square|Squares],D) :-
  mandist(Tile,Square,D1), totdist(Tiles,Squares,D2),
  D is D1+D2.
```

Best-first search applied to scheduling

Otask-scheduling problem

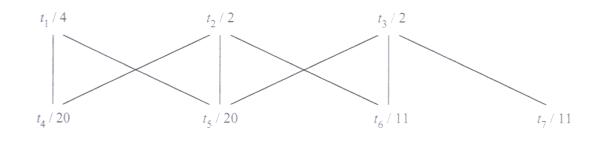
Given

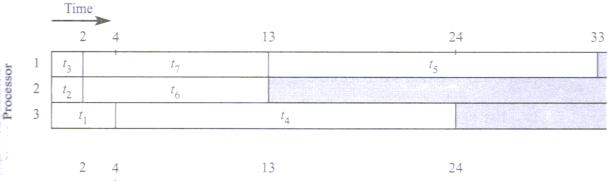
- a collection of tasks t1, t2, ... with predefined execution times and a precedence relation
- a set of m identical processors, where any task can be executed on any processor and each processor can only execute one task at a time

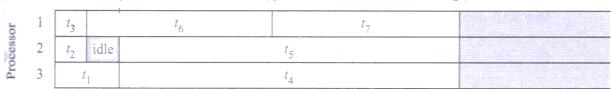
Goal

minimize the finishing time over all permissible schedules

Best-first search applied to scheduling







• Time and space complexity of A*

- Heuristic guidance results in the reduction of effective branching of search.
- The order of the complexity of A* is still exponential in the depth of search, w.r.t. both time and space.
 - Why?
 - •
- Which is more costly: space or time?
 - In most practical situations space is more critical.
 - two space-saving techniques

⊙IDA* - iterative deepening A*

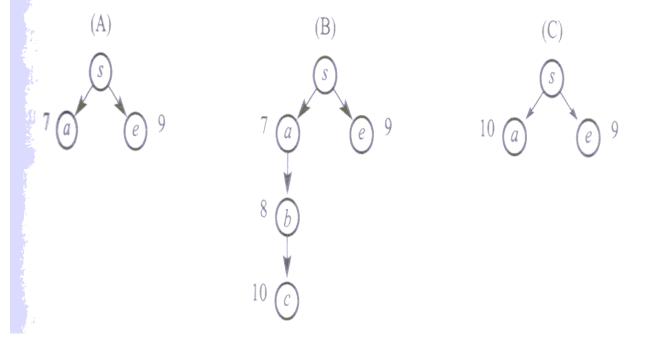
- In IDA*, the successive depth-first searches are bounded by the current limit in the values of the nodes (heuristic f-values of the nodes).
- the evaluation function f
 - How good f is depends on how many nodes have equal f-values.

OIDA* - iterative deepening A*

- Properties of IDA*
 - acceptability of the overheads of repeated searches
 - addmissibility
 - If h is admissible (h(N) <= h*(N) for all N), then IDA* is guaranteed to find an optimal solution.
 - It does not guarantee that the nodes are explored in the best-first order (i.e. the order of increasing fvalues).

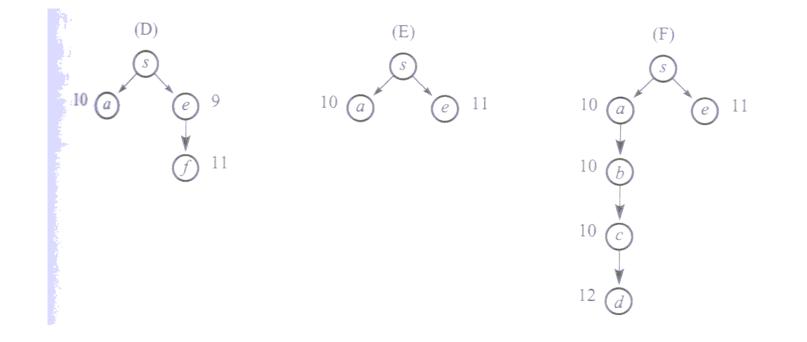
ORBFS - recursive best-first search

 Unlike A*, RBFS only keeps the current search path and the sibling nodes along this path.

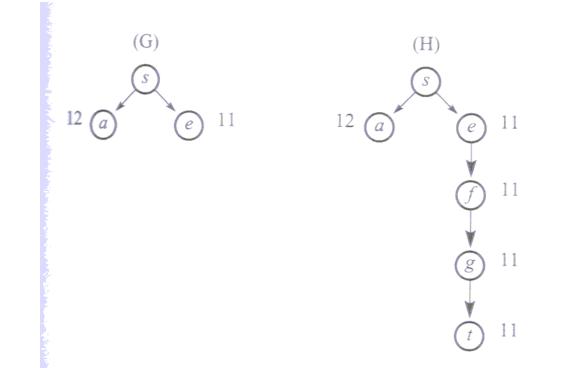


Jong C. Park

ORBFS - recursive best-first search



ORBFS - recursive best-first search



• RBFS - recursive best-first search

- Characteristics
 - The space complexity is linear in the depth of search, at the expense of the time for regenerating already generated nodes.
 - It expands the nodes in the best-first order.

OBest-first search

- Best-first search applied to the eight puzzle
- Best-first search applied to scheduling
- Space-saving techniques for bestfirst search