
CS370

Symbolic Programming
Declarative Programming

LECTURE 15: Knowledge Representation and
Expert Systems

Symbolic Programming
Declarative Programming

LECTURE 15: Knowledge Representation and
Expert Systems

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Knowledge Representation
and Expert Systems

Functions and structure of an expert
system
Representing knowledge with if-then
rules
Forward and backward chaining in
rule-based systems
Generating explanation
Introducing uncertainty
Semantic networks and frames

3 Symbolic ProgrammingJong C. Park

Functions and structure
of an expert system

Typical applications of an expert
system

medical diagnosis
locating a failure in an equipment
interpreting measurement data

4 Symbolic ProgrammingJong C. Park

Functions and structure
of an expert system

Issues
expert knowledge
explanation
uncertainty and incompleteness of the
knowledge

Functions of an expert system
problem-solving function
user-interaction function

5 Symbolic ProgrammingJong C. Park

Functions and structure
of an expert system

Modules of an expert system

Why separate knowledge from
algorithms?

6 Symbolic ProgrammingJong C. Park

Representing knowledge
with if-then rules

Examples of production rules
if precondition P then conclusion C
if

1 the infection is primary bacteremia, and
2 the site of the culture is one of the sterilesites, and
3 the suspected portal of entry of the organism is the
gastrointestinal tract

then
there is suggestive evidence (0.7) that the identity of the
organism is bacteroides.

7 Symbolic ProgrammingJong C. Park

Representing knowledge
with if-then rules

Examples of production rules
if situation S then action A

if the pressure in V-01 reached relief valve lift pressure
then the relief valve on V-01 has lifted [N = 0.005, S =

400]

if conditions C1 and C2 hold then condition C
does not hold

8 Symbolic ProgrammingJong C. Park

Representing knowledge
with if-then rules

Why production rules?
modularity
incrementality
modifiability
transparency

Questions
How

How did you reach this conclusion?

Why
Why are you interested in this info.?

9 Symbolic ProgrammingJong C. Park

Representing knowledge
with if-then rules

A toy knowledge base

10 Symbolic ProgrammingJong C. Park

Forward and backward chaining

Backward chaining
from the hypothesis to the pieces of
evidence
use Prolog’s own syntax for rules
leak_in_bathroom :- hall_wet, kitchen_dry.
problem_in_kitchen :- hall_wet, bathroom_dry.
no_water_from_outside :- window_closed; no_rain.
leak_in_kitchen :- problem_in_kitchen,

no_water_from_outside.
hall_wet. bathroom_dry. window_closed.
?- leak_in_kitchen.

11 Symbolic ProgrammingJong C. Park

Forward and backward chaining

Backward chaining
define new operators for if, then, or, and and.
:- op(800,fx,if).
:- op(700, xfx, then).
:- op(300,xfy,or).
:- op(200,xfy,and).
if hall_wet and kitchen_dry
then leak_in_bathroom.

observable findings as a procedure fact
fact(hall_wet).
fact(bathroom_dry).

12 Symbolic ProgrammingJong C. Park

Forward and backward chaining

Backward chaining (Figure 15.6)
new interpreter: is_true(P)
is_true(P) :- fact(P).
is_true(P) :- if Condition then P,

is_true(Condition).
is_true(P1 and P2) :- is_true(P1), is_true(P2).
is_true(P1 or P2) :- is_true(P1) ; is_true(P2).

13 Symbolic ProgrammingJong C. Park

Forward and backward chaining

Forward chaining
from confirmed findings to the final conclusion

if Condition then Conclusion
forward :- new_drived_fact(P), !,

write('Derived: '), write(P), nl, assert(fact(P)),
forward ; write('No more facts').

new_derived_fact(Concl) :-
if Cond then Concl, not fact(Concl),
composed_fact(Cond).

composed_fact(Cond) :- fact(Cond).
composed_fact(Cond1 and Cond2) :-

composed_fact(Cond1), composed_fact(Cond2).
composed_fact(Cond1 or Cond2) :-

composed_fact(Cond1) ; composed_fact(Cond2).

14 Symbolic ProgrammingJong C. Park

Forward and backward chaining

Comparison
goal-driven vs. data-driven

data ... goals
evidence ... hypotheses
findings, observations ... explanations

What are the measures?
data nodes vs. goal nodes

hybrid

15 Symbolic ProgrammingJong C. Park

Generating explanation

Explaining how and why
how

give the proof tree of the final conclusion
modify the predicate is_true (Figure 15.8)

is_true(P,P) :- fact(P).
is_true(P,P<=CondProof) :-

if Cond then P,
is_true(Cond,CondProof).

is_true(P1 and P2,Proof1 and Proof2) :-
is_true(P1,Proof1), is_true(P2,Proof2).

cf. the solution trees in AND/OR graphs

16 Symbolic ProgrammingJong C. Park

Generating explanation

Explaining how and why
why

required during the reasoning process
requires user interaction with the reasoning process
Chapter 16

17 Symbolic ProgrammingJong C. Park

Introducing uncertainty

Categorical answers and implications
either true or false, not somewhere between

Qualified answers and implications
true, highly likely, likely, unlikely, impossible
the degree of belief, certainty factor, measure
of belief, subjective certainty
Figure 15.9: An interpreter for rules with
certainties

18 Symbolic ProgrammingJong C. Park

Introducing uncertainty

Combining the certainties
Proposition : CertaintyFactor
if Condition then Conclusion : Certainty
c(P1 and P2) = min(c(P1),c(P2))
c(P1 or P2) = max(c(P1),c(P2))
c(P2) = c(P1)*C if P1 then P2 : C
?- certainty(leak_in_kitchen,C).
C = 0.8

19 Symbolic ProgrammingJong C. Park

Introducing uncertainty

Controversial issues
the usefulness of a probability theory
drawbacks of ad hoc uncertainty schemes

Modeling dependencies
mathematical soundness
realistic correctness

20 Symbolic ProgrammingJong C. Park

Semantic networks and frames

Semantic networks: entities and
relations

isa(bird,animal).
isa(ross,albatross).
moving_method(bird,fly).
moving_method(kiwi,walk).

21 Symbolic ProgrammingJong C. Park

Semantic networks and frames

Inheritance
the method of moving

moving_method(X,Method) :-
isa(X,SuperX),
moving_method(SuperX,Method).

more general rule about facts
fact(Fact) :- Fact, !.
fact(Fact) :- Fact =.. [Rel,Arg1,Arg2],

isa(Arg1,SuperArg),
SuperFact =.. [Rel,SuperArg,Arg2],
fact(SuperFact).

?- fact(moving_method(kim,Method)).
Method = walk

22 Symbolic ProgrammingJong C. Park

Semantic networks and frames

Frames: facts about objects (Figure 15.14)

FRAME: bird
a_kind_of: animal
moving_method: fly
active_at: daylight

FRAME: albatross
a_kind_of: bird
color: black_and_white
size: 115

FRAME: kiwi
a_kind_of: bird
moving_method: walk
active_at: night
color: brown
size: 40

FRAME: Albert
a_kind_of: albatross
size: 120

23 Symbolic ProgrammingJong C. Park

Semantic networks and frames

Frames in Prolog & retrieving facts
Frame_name(Slot,Value)
value(Frame,Slot,Value)

value(Frame,Slot,Value) :-
Query =.. [Frame,Slot,Value], call(Query), !.

value(Frame,Slot,Value) :-
parent(Frame,ParentFrame),
value(ParentFrame,Slot,Value).

parent(Frame,ParentFrame) :-
(Query =.. [Frame,a_kind_of,ParentFrame];
Query =.. [Frame,instance_of,ParentFrame]), call(Query).

?- value(albert,active_at,AlbertTime).
AlbertTime = daylight

24 Symbolic ProgrammingJong C. Park

Summary

Functions and structure of an expert
system
Representing knowledge with if-then
rules
Forward and backward chaining in
rule-based systems
Generating explanation
Introducing uncertainty
Semantic networks and frames

