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Knowledge Representation 
and Expert Systems

Functions and structure of an expert 
system
Representing knowledge with if-then
rules
Forward and backward chaining in 
rule-based systems
Generating explanation
Introducing uncertainty
Semantic networks and frames
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Functions and structure
of an expert system

Typical applications of an expert 
system

medical diagnosis
locating a failure in an equipment
interpreting measurement data
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Functions and structure 
of an expert system

Issues
expert knowledge
explanation
uncertainty and incompleteness of the 
knowledge

Functions of an expert system
problem-solving function
user-interaction function
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Functions and structure 
of an expert system

Modules of an expert system

Why separate knowledge from 
algorithms?
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Representing knowledge 
with if-then rules

Examples of production rules
if precondition P then conclusion C
if

1 the infection is primary bacteremia, and
2 the site of the culture is one of the sterilesites, and
3 the suspected portal of entry of the organism is the 
gastrointestinal tract

then
there is suggestive evidence (0.7) that the identity of the 
organism is bacteroides.
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Representing knowledge 
with if-then rules

Examples of production rules
if situation S then action A

if the pressure in V-01 reached relief valve lift pressure
then the relief valve on V-01 has lifted [N = 0.005, S = 

400]

if conditions C1 and C2 hold then condition C 
does not hold
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Representing knowledge 
with if-then rules

Why production rules?
modularity
incrementality
modifiability
transparency

Questions
How

How did you reach this conclusion?

Why
Why are you interested in this info.?
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Representing knowledge 
with if-then rules

A toy knowledge base
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Forward and backward chaining

Backward chaining
from the hypothesis to the pieces of 
evidence
use Prolog’s own syntax for rules
leak_in_bathroom :- hall_wet, kitchen_dry.
problem_in_kitchen :- hall_wet, bathroom_dry.
no_water_from_outside :- window_closed; no_rain.
leak_in_kitchen :- problem_in_kitchen, 

no_water_from_outside.
hall_wet. bathroom_dry. window_closed.
?- leak_in_kitchen.
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Forward and backward chaining

Backward chaining 
define new operators for if, then, or, and and.
:- op(800,fx,if).
:- op(700, xfx, then).
:- op(300,xfy,or).
:- op(200,xfy,and).
if hall_wet and kitchen_dry
then leak_in_bathroom.

observable findings as a procedure fact
fact(hall_wet).
fact(bathroom_dry).
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Forward and backward chaining

Backward chaining (Figure 15.6)
new interpreter: is_true(P)
is_true(P) :- fact(P).
is_true(P) :- if Condition then P, 

is_true(Condition).
is_true(P1 and P2) :- is_true(P1), is_true(P2).
is_true(P1 or P2) :- is_true(P1) ; is_true(P2).
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Forward and backward chaining

Forward chaining
from confirmed findings to the final conclusion

if Condition then Conclusion
forward :- new_drived_fact(P),  !, 

write('Derived: '), write(P), nl, assert(fact(P)), 
forward ; write('No more facts').

new_derived_fact(Concl) :-
if Cond then Concl, not fact(Concl), 
composed_fact(Cond).

composed_fact(Cond) :- fact(Cond).
composed_fact(Cond1 and Cond2) :-

composed_fact(Cond1), composed_fact(Cond2).
composed_fact(Cond1 or Cond2) :-

composed_fact(Cond1) ; composed_fact(Cond2).
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Forward and backward chaining

Comparison
goal-driven vs. data-driven

data ... goals
evidence ... hypotheses
findings, observations ... explanations

What are the measures?
data nodes vs. goal nodes

hybrid
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Generating explanation

Explaining how and why
how

give the proof tree of the final conclusion
modify the predicate is_true (Figure 15.8)

is_true(P,P) :- fact(P).
is_true(P,P<=CondProof) :-

if Cond then P,
is_true(Cond,CondProof).

is_true(P1 and P2,Proof1 and Proof2) :-
is_true(P1,Proof1), is_true(P2,Proof2).

cf. the solution trees in AND/OR graphs
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Generating explanation

Explaining how and why
why

required during the reasoning process
requires user interaction with the reasoning process
Chapter 16
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Introducing uncertainty

Categorical answers and implications
either true or false, not somewhere between

Qualified answers and implications
true, highly likely, likely, unlikely, impossible
the degree of belief, certainty factor, measure 
of belief, subjective certainty
Figure 15.9: An interpreter for rules with 
certainties
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Introducing uncertainty

Combining the certainties
Proposition : CertaintyFactor
if Condition then Conclusion : Certainty
c(P1 and P2) = min(c(P1),c(P2))
c(P1 or P2) = max(c(P1),c(P2))
c(P2) = c(P1)*C if P1 then P2 : C
?- certainty(leak_in_kitchen,C).
C = 0.8
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Introducing uncertainty

Controversial issues
the usefulness of a probability theory
drawbacks of ad hoc uncertainty schemes

Modeling dependencies
mathematical soundness
realistic correctness
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Semantic networks and frames

Semantic networks: entities and 
relations

isa(bird,animal).
isa(ross,albatross).
moving_method(bird,fly).
moving_method(kiwi,walk).
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Semantic networks and frames

Inheritance
the method of moving

moving_method(X,Method) :-
isa(X,SuperX),
moving_method(SuperX,Method). 

more general rule about facts
fact(Fact) :- Fact, !.
fact(Fact) :- Fact =.. [Rel,Arg1,Arg2],

isa(Arg1,SuperArg), 
SuperFact =.. [Rel,SuperArg,Arg2],
fact(SuperFact).

?- fact(moving_method(kim,Method)).
Method = walk
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Semantic networks and frames

Frames: facts about objects (Figure 15.14)

FRAME: bird
a_kind_of: animal
moving_method: fly
active_at: daylight

FRAME: albatross
a_kind_of: bird
color: black_and_white
size: 115

FRAME: kiwi
a_kind_of: bird
moving_method: walk
active_at: night
color: brown
size: 40

FRAME: Albert
a_kind_of: albatross
size: 120
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Semantic networks and frames

Frames in Prolog & retrieving facts
Frame_name(Slot,Value)
value(Frame,Slot,Value)

value(Frame,Slot,Value) :-
Query =.. [Frame,Slot,Value], call(Query), !.

value(Frame,Slot,Value) :-
parent(Frame,ParentFrame), 
value(ParentFrame,Slot,Value). 

parent(Frame,ParentFrame) :-
(Query =.. [Frame,a_kind_of,ParentFrame]; 
Query =.. [Frame,instance_of,ParentFrame]), call(Query). 

?- value(albert,active_at,AlbertTime).
AlbertTime = daylight
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Summary

Functions and structure of an expert 
system
Representing knowledge with if-then
rules
Forward and backward chaining in 
rule-based systems
Generating explanation
Introducing uncertainty
Semantic networks and frames


