""""" LLECTURE 15T . Know |

ﬂr'*w

park@cs.kaist.ac.kr




Knowledge Representation

®Functions and structure of an expert
system

®Representing knowledge with if-then
rules

®Forward and backward chaining in
rule-based systems

® Generating explanation
® Introducing uncertainty
® Semantic networks and frames

Jong C. Park 2 Symbolic Programming



Functions and structure

of an expert s\

® Typical applications of an expert
system
medical diagnosis
locating a failure in an equipment
Interpreting measurement data

Jong C. Park 3 Symbolic Programming



Functions and structure

® Issues
expert knowledge
explanation

uncertainty and incompleteness of the
knowledge

®Functions of an expert system
problem-solving function
user-interaction function

Jong C. Park 4 Symbolic Programming



Functions and structure

of an expert s)

®Modules of an expert system

| CHigill
I &

Knowledge ¢ ; } Inference | User " U
hoce . . [P L -a——P | SCT
base engine ’ interface |

Shell

®OWhy separate knowledge from
algorithms?

4

Jong C. Park 5 Symbolic Programming



Representing knowledge

with if-then rules

® Examples of production rules

+ If precondition P then conclusion C
If
1 the infection is primary bacteremia, and
2 the site of the culture is one of the sterilesites, and

3 the suspected portal of entry of the organism is the
gastrointestinal tract

then

there is suggestive evidence (0.7) that the identity of the
organism is bacteroides.

Jong C. Park 6 Symbolic Programming



Representing knowledge

with if-thén rules -

®Examples of production rules

If situation S then action A
If the pressure in V-01 reached relief valve lift pressure

then the relief valve on V-01 has lifted [N = 0.005, S =
400]

If conditions C1 and C2 hold then condition C
does not hold

Jong C. Park Ve Symbolic Programming



Representing knowledge

-with-if-thén rules

®Why production rules?
modularity
Incrementality
modifiability
transparency
®Questions

How
» How did you reach this conclusion?

Why

= Why are you interested in this info.?

Jong C. Park 8 Symbolic Programming



Representing knowledge

with-if-thén rules

®A toy knowledge base

kitchen_dry

window

leak in_bathroom

\/

kitchen

hall :

hall_wet

problem_in_kitchen

\vd

bath-

room

3

leak _in_kitchen
window_closed

bathroom_dry \\

no water_from_outside

NSE

no_rain

Jong C. Park 9 Symbolic Programming



Forward andbacﬁ_ard chaining

®Backward chaining

+ from the hypothesis to the pieces of
evidence

+ use Prolog’s own syntax for rules
leak in_bathroom :- hall wet, kitchen_dry.
problem_in_kitchen :- hall wet, bathroom_dry.
no_water from_outside :- window_closed; no_rain.
leak _in_kitchen :- problem_in_Kkitchen,

no_water_from_outside.

hall _wet. bathroom_dry. window _closed.
?- leak In_kitchen.

Jong C. Park 10 Symbolic Programming



Forward andbacﬁ_ard chaining

®Backward chaining

+ define new operators for if, then, or, and and.
- op(800,fx,if).
- op(700, xfx, then).
- op(300,xfy,or).
- op(200,xfy,and).
If hall wet and kitchen_dry
then leak _in_bathroom.

+ observable findings as a procedure fact
fact(hall_wet).
fact(bathroom_dry).

Jong C. Park 11 Symbolic Programming



Forward and backward chaining

®Backward chaining (Figure 15.6)

+ hew Iinterpreter: is true(P)
Is_true(P) :- fact(P).
Is_true(P) :- if Condition then P,
IS_true(Condition).
Is_true(P1 and P2) :- is_true(P1l), is_true(P2).
IS _true(P1 or P2) :-is_true(Pl) ; is_true(P2).

Jong C. Park 12 Symbolic Programming



Forward and baeckward chaining

® Forward chaining

+ from confirmed findings to the final conclusion
» if Condition then Conclusion
forward :- new_drived fact(P), I,
write(‘Derived: "), write(P), nl, assert(fact(P)),
forward ; write("No more facts').
new_derived_ fact(Concl) :-
If Cond then Concl, not fact(Concl),
composed fact(Cond).
composed fact(Cond) :- fact(Cond).
composed fact(Condl and Cond2) :-
composed fact(Condl), composed fact(Cond2).
composed fact(Condl or Cond2) :-
composed_ fact(Condl) ; composed fact(Cond2).

Jong C. Park 13 Symbolic Programming



~_Forward and backward chaining

®Comparison

goal-driven vs. data-driven
» data - ... =2 goals
» evidence - ... 2 hypotheses
» findings, observations - ... - explanations

What are the measures?
» data nodes vs. goal nodes

hybrid

hall wet

e
.

™ fOrward
~—

leak in_bathroom

g

",.-‘

e backward
kitchen dry

Jong C. Park 14 Symbolic Programming



Generating explanation

® Explaining how and why

+ how
= give the proof tree of the final conclusion
» modify the predicate is true (Figure 15.8)
IS _true(P,P) :- fact(P).
IS _true(P,P<=CondProof) :-
If Cond then P,
Is_true(Cond,CondProof).
IS _true(P1 and P2,Proofl and Proof2) :-
IS _true(P1,Proofl), is true(P2,Proof2).
= cf. the solution trees in AND/OR graphs

Jong C. Park 15 Symbolic Programming



_Generating explanation

®Explaining how and why
why

* required during the reasoning process
" requires user interaction with the reasoning process
» Chapter 16

Jong C. Park 16 Symbolic Programming



_Introducing uncertainty

® Categorical answers and implications
either true or false, not somewhere between

® Qualified answers and implications
true, highly likely, likely, unlikely, impossible

the degree of belief, certainty factor, measure
of belief, subjective certainty

Figure 15.9: An interpreter for rules with
certainties

Jong C. Park 17 Symbolic Programming



_Introducing uncertainty

® Combining the certainties
Proposition : CertaintyFactor
If Condition then Conclusion : Certainty
c(P1 and P2) = min(c(P1),c(P2))
c(P1 or P2) = max(c(P1),c(P2))
c(P2) = c(P1)*C <« if P1 then P2 : C
?- certainty(leak_in_kitchen,C).
C=0.8

Jong C. Park 18 Symbolic Programming



®Controversial issues
the usefulness of a probability theory
drawbacks of ad hoc uncertainty schemes
®Modeling dependencies
mathematical soundness
realistic correctness

Jong C. Park 19 Symbolic Programming



® Semantic networks: entities and

relations

Isa(bird,animal).
isa Isa(ross,albatross).
moving_method(bird,fly).
moving_method(kiwi,walk).

Albert Kim

Jong C. Park 20 Symbolic Programming



Semantic hetwogks and frames

® Inheritance

+ the method of moving
moving_method(X,Method) :-
iIsa(X,SuperX),
moving_method(SuperX,Method).

+ more general rule about facts

fact(Fact) :- Fact, !.

fact(Fact) :- Fact =.. [Rel,Argl,Arg?2],
Isa(Argl,SuperArg),
SuperFact =.. [Rel,SuperArg,Arg2],
fact(SuperFact).

?- fact(moving_method(kim,Method)).

Method = walk

Jong C. Park 21

Symbolic Programming



Semantic hetwogks and frames

®Frames: facts about objects (Figure 15.14)

FRAME: bird FRAME: albatross
a_kind_of: animal a_kind_of: bird
moving_method: fly color: black _and_white
active_at: daylight size: 115

FRAME: kiwi FRAME: Albert
a_kind_of: bird a_kind_of: albatross
moving_method: walk size: 120

active_at: night

color: brown

size: 40

Jong C. Park 22 Symbolic Programming



Semantic netwogks and frames

®Frames in Prolog & retrieving facts
+ Frame_name(Slot,Value)

+ value(Frame,Slot,Value)
value(Frame,Slot,Value) :-
Query =.. [Frame,Slot,Value], call(Query), !.
value(Frame,Slot,Value) :-
parent(Frame,ParentFrame),
value(ParentFrame,Slot,Value).
parent(Frame,ParentFrame) :-
(Query =.. [Frame,a_kind_of,ParentFrame];
Query =.. [Frame,instance_of,ParentFrame]), call(Query).
?- value(albert,active_at,AlbertTime).
AlbertTime = daylight

Jong C. Park 23 Symbolic Programming



®Functions and structure of an expert
system

®Representing knowledge with if-then
rules

®Forward and backward chaining in
rule-based systems

® Generating explanation
® Introducing uncertainty
® Semantic networks and frames

Jong C. Park 24 Symbolic Programming



