
CS370

Symbolic Programming
Declarative Programming

LECTURE 16: Planning

Symbolic Programming
Declarative Programming

LECTURE 16: Planning

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Planning

Representing actions
Deriving plans by means-ends
analysis
Protecting goals
Procedural aspects and breadth-first
regime
Goal regression
Combining means-ends planning
with best-first heuristic
Uninstantiated actions and partial-
order planning

3 Symbolic ProgrammingJong C. Park

Representing actions

Planning task: an example (Figure 17.1)
[clear(2),clear(4),clear(b),clear(c),on(a,1),on(b,3),on(c,a)]

4 Symbolic ProgrammingJong C. Park

Representing actions

Specification of an action
precondition: can(Action,Cond)
add-list: add(Action,AddRels)
delete-list: del(Action,DelRels)
anything else?

Type of action in the blocks world
move(Block,From,To)

5 Symbolic ProgrammingJong C. Park

Representing actions

A definition of the planning space
can(move(Block,From,To),

[clear(Block), clear(To), on(Block,From)]) :-
block(Block), object(To), To \== Block, object(From),
From \== To, Block \== From.

adds(move(X,From,To),
[on(X,To),clear(From)]).

deletes(move(X,From,To),
[on(X,From),clear(To)].

object(X) :- place(X) ; block(X).
block(a). block(b). block(c).
place(1). place(2). place(3). place(4).
state1([clear(2),clear(4),clear(b),clear(c),on(a,1),on(b,3)

,on(c,a)]).

c
a b
= = = =
1 2 3 4

6 Symbolic ProgrammingJong C. Park

Representing actions

Camera Manipulation (Figure 17.3)

Opening the case Rewinding film
Closing the case Removing battery or film
Opening a slot Inserting new battery or film
Closing a slot Taking pictures

Initial State
[camera_in_case, slot_closed(film), slot_closed(battery),
in(film), film_at_end, in(battery)]

Goal State
[in(film), film_at_start, film_unused, in(battery),
ok(battery), slot_closed(film), slot_closed(battery)]

7 Symbolic ProgrammingJong C. Park

Deriving plans by means-ends analysis

The principle of means-ends planning
To solve a list of goals Goals in state State,
leading to state FinalState, do:
If all the Goals are true in State then FinalState =

State.
Otherwise do the following steps.
(1) Select a still unsolved goal Goal in Goals.
(2) Find an action Action that adds Goal to the current

state.
(3) Enable Action by solving the precondition Condition

of Action, giving MidState1.
(4) Apply Action to MidState1, giving MidState2 (in

MidState2, Goal is true).
(5) Solve Goals in MidState2, leading to FinalState.

8 Symbolic ProgrammingJong C. Park

Deriving plans by means-ends analysis

The principle of means-ends planning
select an unsolved goal: on(a,b)
find an action that achieves it: move(a,From,b)
enable the action by satisfying its precondition:
[clear(a),clear(b),on(a,From)]
find an action that achieves the relation
clear(a): move(Block,a,To)

9 Symbolic ProgrammingJong C. Park

Deriving plans by means-ends analysis

Means-ends planner (Figure 17.5)

% plan(State,Goals,Plan,FinalState)
plan(State,Goals,[],State) :- satisfied(State,Goals).
plan(State,Goals,Plan,FinalState) :-

conc(PrePlan,[Action|PostPlan],Plan),
select(State,Goals,Goal),
achieves(Action,Goal),
can(Action,Condition),
plan(State,Condition,PrePlan,MidState1),
apply(MidState1,Action,MidState2),
plan(MidState2,Goals,PostPlan,FinalState).

10 Symbolic ProgrammingJong C. Park

Deriving plans by means-ends analysis

Means-ends planner
?- Start =

[clear(2),clear(4),clear(b),clear(c),on(a,1),on(b,3),
on(c,a)], plan(Start, [on(a,b)], Plan, FinState).

Plan = [move(c,a,2),move(a,1,b)]
FinState =

[on(a,b),clear(1),on(c,2),clear(a),clear(4),clear(c),on(b,
3)]

?- Start =
[camera_in_case, slot_closed(film), slot_closed(battery),
in(film), film_at_end,in(battery)],
plan(Start, [ok(battery)], FixBattery,_).

FixBattery = [open_case, open_slot(battery),
remove(battery), insert_new(battery)]

11 Symbolic ProgrammingJong C. Park

Protecting goals

Strange behavior
?- plan(Start,[on(a,b),on(b,c)],Plan,_).
Plan = [move(b,3,c),

move(b,c,3),
move(c,a,2),
move(a,1,b),
move(a,b,1),
move(b,3,c),
move(a,1,b)]

c
a b
= = = =
1 2 3 4

12 Symbolic ProgrammingJong C. Park

Protecting goals

Strange behavior
?- plan(Start,[clear(2),clear(3)],Plan,_).

move(b,3,2)
move(b,2,3)
move(b,3,2)
move(b,2,3)
. . .

c
a b
= = = =
1 2 3 4

13 Symbolic ProgrammingJong C. Park

Protecting goals

Protect the goals that are already
achieved
plan(InitialState,Goals,Plan,FinalState) :-

plan(InitialState,Goals,[],Plan,FinalState).
plan(State,Goals,_,[],State) :- satisfied(State,Goals).
plan(State,Goals,Protected,Plan,FinalState) :-

conc(PrePlan,[Action|PostPlan],Plan),
select(State,Goals,Goal),
achieves(Action,Goal), can(Action,Condition),
preserves(Action,Protected),
plan(State,Condition,Protected,PrePlan,MidState1),
apply(MidState1,Action,MidState2),
plan(MidState2,Goals,[Goal|Protected],PostPlan,FinalState).

14 Symbolic ProgrammingJong C. Park

Protecting goals

Protect the goals that are already
achieved
preserves(Action,Goals) :-

deletes(Action,Relations),
not (member(Goal,Relations),

member(Goal,Goals)).

15 Symbolic ProgrammingJong C. Park

Procedural aspects
and breadth-first regime

The search behavior
globally depth-first w.r.t. action sequencing
locally breadth-first w.r.t. preplan expansion
PrePlan = [];
PrePlan = [_];
PrePlan = [_, _];
PrePlan = [_, _, _];
. . .

16 Symbolic ProgrammingJong C. Park

Procedural aspects
and breadth-first regime

Forcing into the breadth-first regime
minimize the length of plans
plan(State,Goals,Plan,FinState) :-

conc(Plan,_,_),
conc(PrePlan,[Action|PostPlan],Plan),
...

plan(Start,[clear(2),clear(3)],Plan,_)
Plan = [move(b,3,4)]

17 Symbolic ProgrammingJong C. Park

Procedural aspects
and breadth-first regime

Forcing into the breadth-first regime
Incompleteness
plan(Start,[on(a,b),on(b,c)],Plan,_)

move(c,a,2)
move(b,3,a)
move(b,a,c)
move(a,1,b)

Why?
It does not suggest all relevant actions to the
planning process. That is, the planner considers only
those actions that pertain to the current goal and
disregards other goals (locality).
We need to enable interaction between different

goals.

c
a b
= = = =
1 2 3 4

18 Symbolic ProgrammingJong C. Park

Regressing goals through actions
We are interested in a list of goals Goals
being true in some state S.
Question:

What goals Goals0 have to be true in S0 to make Goals
true in S, where the action A leads state S0 to state S?

Properties of Goals0
Action A must be possible in S0 (Goals0 must imply the
precondition for action A).
For each goal G in Goals either action A adds G, or G is in
Goals0 and A does not delete G.

Goal regression

state S0: Goals0 state S: Goals
A

19 Symbolic ProgrammingJong C. Park

Goal regression

Regressing goals through actions
Regressing Goals through action A

to determine Goals0 from given Goals and action A

20 Symbolic ProgrammingJong C. Park

Goal regression

Goal regression for planning
To achieve a list of goals Goals from some
initial situation StartState, do:

If Goals are true in StartState then the empty plan
suffices;
Otherwise select a goal G in Goals and an action A
that adds G; then regress Goals through A obtaining
NewGoals and find a plan for achieving NewGoals
from StartState.

21 Symbolic ProgrammingJong C. Park

Goal regression

Goal regression for planning
We use the relation below for compatible
goals.

impossible(Goal, Goals)
impossible(on(X, X), _).
impossible(on(X, Y), Goals) :-

member(clear(Y), Goals)
;
member(on(X,Y1), Goals), Y1 \== Y
;
member(on(X1, Y), Goals), X1 \== X.

impossible(clear(X), Goals) :-
member(on(_, X), Goals).

22 Symbolic ProgrammingJong C. Park

Goal regression

Planner with goal regression (Figure
17.8)
plan(State,Goals,[]) :- satisfied(State,Goals).
plan(State, Goals, Plan) :-

conc(PrePlan, [Action], Plan),
select(State, Goals, Goal), achieves(Action, Goal),
can(Action, Condition), preserves(Action, Goals),
regress(Goals, Action, RegressedGoals),
plan(State, RegressedGoals, PrePlan).

satisfied(State, Goals) :- delete_all(Goals, State, []).
regress(Goals, Action, RegressedGoals) :-

add(Action, NewRels), delete_all(Goals, NewRels,
RestGoals),
can(Action, Condition),
addnew(Condition, RestGoals, RegressedGoals).

23 Symbolic ProgrammingJong C. Park

Guidance with domain-specific
knowledge

The top-most on relations should be achieved
last.
The selection of goals that are true in the
initial state should be deferred.
Alternative actions can be rated.

Some actions achieve several goals simultaneously, some
action’s precondition may be easier to satisfy.

Continue working on the goal that looks
easiest among the alternative regressed goal
sets.

Combining means-ends planning
with best-first heuristic

24 Symbolic ProgrammingJong C. Park

Making use of the best-first search
program

Define a successor relation between the
nodes in the state space.

s(Node1,Node2,Cost)

Define the goal nodes of the search by
relation goal(Node)
Define a heuristic function by relation
h(Node, HeuristicEstimate)
Define the start node of the search.

Combining means-ends planning
with best-first heuristic

How would you do it?

25 Symbolic ProgrammingJong C. Park

Combining means-ends planning
with best-first heuristic

Formulating the state space
Make goal sets correspond to nodes in the
state space.
Define a link between two goal sets Goals1
and Goals2 if there is an action A such that

A adds some goal in Goals1,
A does not destroy any goal in Goals1, and
Goals2 is a result of regressing Goals1 through
action A, as defined by the relation regress, as in
regress(Goals1, A, Goals2).

26 Symbolic ProgrammingJong C. Park

Combining means-ends planning
with best-first heuristic

Formulating the state space
s(Goals1, Goals2, 1) :-
member(Goal, Goals1),
achieves(Action, Goal),
can(Action, Condition),
preserves(Action, Goals1),
regress(Goals1, Action, Goals2).

The program finds a sequence of
states, not actions.
[[clear(c),clear(2),on(c,a),clear(b),on(a,1)],
[clear(a),clear(b),on(a,1)], [on(a,b)]]

27 Symbolic ProgrammingJong C. Park

Instead, we represent nodes as pairs
of the form Goals -> Action.
s(Goals -> NextAction, NewGoals -> Action, 1) :-

member(Goal, Goals), achieves(Action, Goal),
can(Action, Condition), preserves(Action, Goals),
regress(Goals, Action, NewGoals).

goal(Goals -> Action) :- start(State), satisfied(State,Goals).
h(Goals -> Action, H) :- start(State),

delete_all(Goals, State, Unsatified),

length(Unsatisfied, H).

Combining means-ends planning
with best-first heuristic

28 Symbolic ProgrammingJong C. Park

Using the revised state-space
definition
start([on(a,1), on(b,3), on(c,a), clear(b), clear(c), clear(2),

clear(4)].
?- bestfirst([on(a,b), on(b,c)] -> stop, Plan).
Plan = [

[clear(2),on(c,a),clear(c),on(b,3),clear(b),on(a,1)] ->
move(c,a,2),
[clear(c),on(b,3),clear(a),clear(b),on(a,1)] ->
move(b,3,c),
[clear(a),clear(b),on(a,1),on(b,c)] -> move(a,1,b),
[on(a,b),on(b,c)] -> stop]

Combining means-ends planning
with best-first heuristic

29 Symbolic ProgrammingJong C. Park

Uninstantiated actions and
partial-order planning

Uninstantiated actions and goals
All the goals for the planner should always be
completely instantiated, and this may result in the
generation of numerous irrelevant alternative moves.
can(move(Block,From,To),[clear(Block),clear(To),

on(Block,From)])
:- block(Block), object(To), ...
move(b,a,1), move(b,a,2), move(b,a,3), move(b,a,4), ...

Use uninstantiated actions and goals instead.
can(move(Block,From,To),[clear(Block),clear(To),

on(Block,From)]).

move(Something,a,Somewhere)

30 Symbolic ProgrammingJong C. Park

Uninstantiated actions and
partial-order planning

Partial-order planning

31 Symbolic ProgrammingJong C. Park

Summary

Representing actions
Deriving plans by means-ends analysis
Protecting goals
Procedural aspects and breadth-first
regime
Goal regression
Combining means-ends planning with
best-first heuristic
Uninstantiated actions and partial-
order planning

