CS370

Symbolic Programming Declarative Programming

LECTURE 17: Machine Learning

Jong C. Park park@cs.kaist.ac.kr

Computer Science Department Korea Advanced Institute of Science and Technology http://nlp.kaist.ac.kr/~cs370

Machine Learning

Introduction

- Learning concepts from examples
- Learning relational descriptions
- **OLearning simple if-then rules**
- Induction of decision trees
- ⊙Learning from noisy data and tree pruning
- OSuccess of learning

Introduction

• Forms of Learning

- learning by being told
- learning by discovery
- learning from examples (inductive learning)

⊙Types of task

- diagnosing a patient or a plant disease
- predicting a weather or the biological activity of a new chemical compound
- determining the biological degradability of chemicals

Learning concepts from examples

• Concepts as sets

- U: the universal set of objects
- Concept C: a subset of objects in U
- To learn concept C means to learn to recognize objects in C.

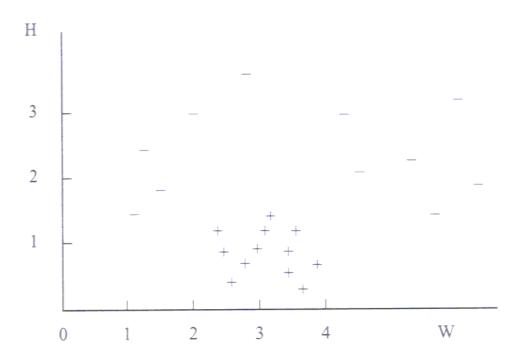
Learning concepts from examples

• Examples

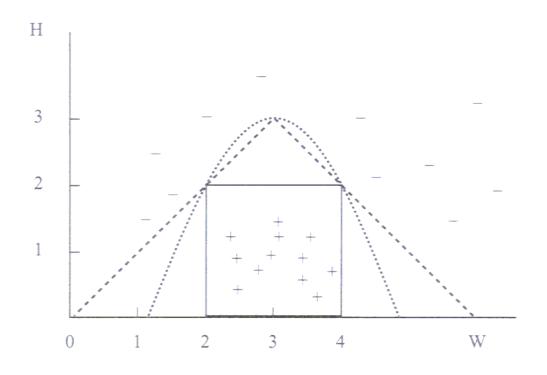
- the concept of being poisonous
- the concept of an arch
- the concept of multiplication
- the concept of a certain disease

• Examples and hypotheses

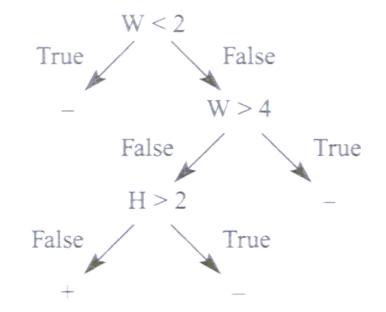
Pluses for edible, minuses for poisonous



• Examples and hypotheses



• Examples and hypotheses



Learning concepts from examples

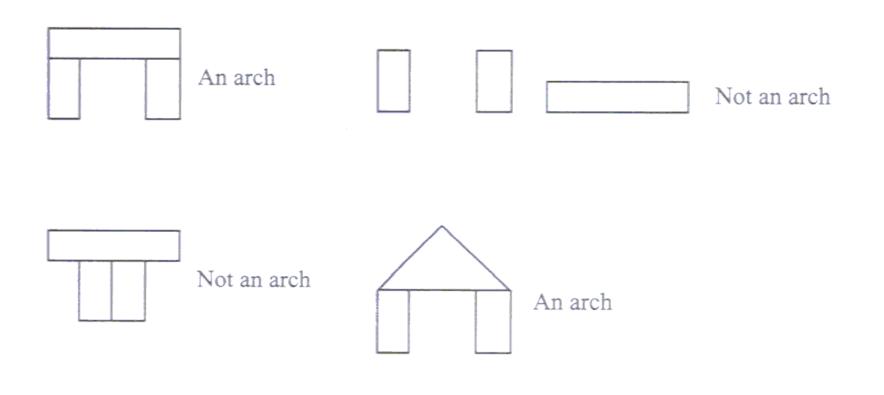
Description languages for objects and concepts

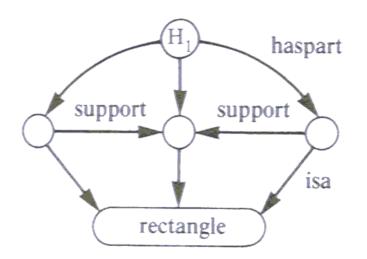
- relational (structural) descriptions
 - an object is defined in terms of its components and the relations between them
- attribute-value descriptions
 - an object is defined in terms of its global features, or a vector of attribute values

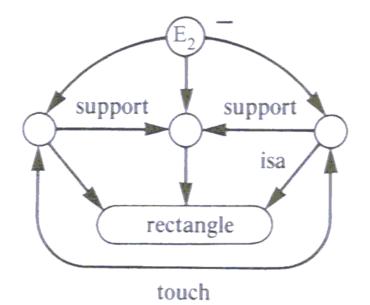
Learning concepts from examples

OAccuracy of hypotheses

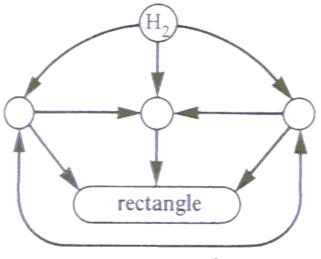
- C: target concept
- L: hypothesis language
- S: a set of classified examples (Obj,Class)
- Goal: Find a formula H in L such that H corresponds to C



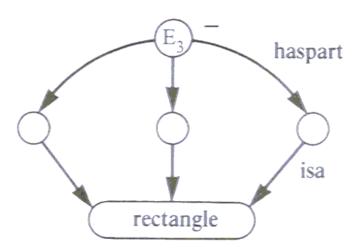


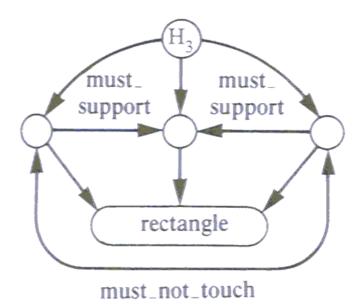


Jong C. Park



must_not_touch



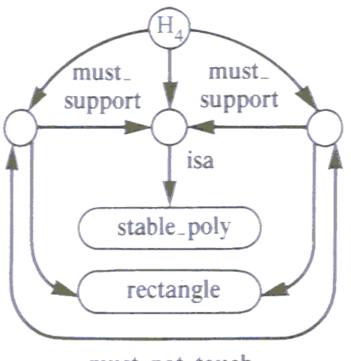


support support isa triangle rectangle

E

Learning relational descriptions

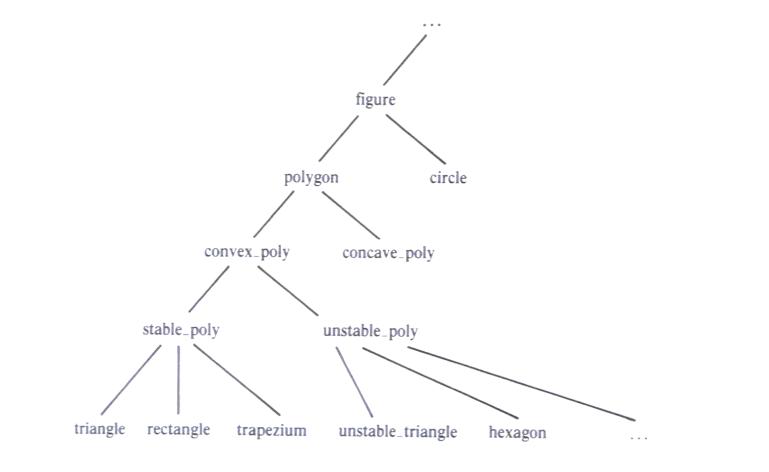
Othe program ARCHES



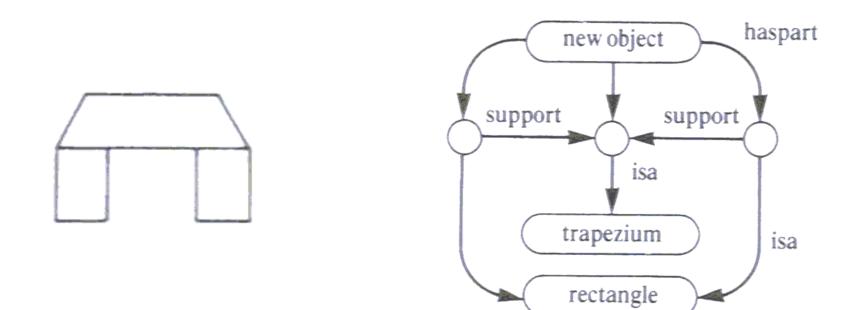
must_not_touch

Jong C. Park

Learning relational descriptions



Jong C. Park



Jong C. Park

Describing objects and concepts by attributes

Describing objects and concepts by attributes

- An object is described by a vector of attribute values.
 - size: small, large
 - shape: long, compact, other
 - holes: none, 1, 2, 3, many

Describing objects and concepts by attributes

- attribute(size,[small,large]).
 attribute(shape,[long,compact,other]).
 attribute(holes,[none,1,2,3,many]).
- example(nut,[size=small,shape=compact,holes=1]).
- • •

. . .

Matching an object and a concept description in Prolog

match(Object,Description) : member(Conjunction,Description),
 satisfy(Object,Conjunction).
satisfy(Object,Conjunction) : not (member(Att = Val,Conjunction),
 member(Att = ValX,Object),
 ValX \== Val).

Inducing rules from examples

- batch learning (vs incremental learning)
- covering algorithm (Figure 18.11)

learn(Class) :-

bagof(example(ClassX,Obj),

example(ClassX,Obj), Examples),

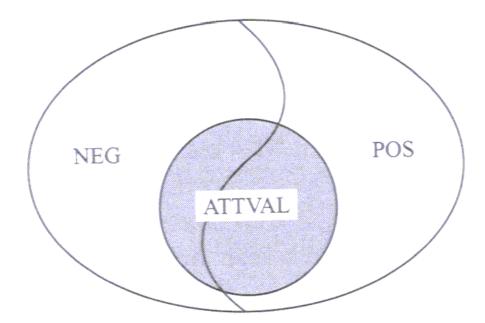
learn(Examples,Class,Description),

nl, write(Class), write('<=='), nl, writelist(Description),

assert(Class<==Description).</pre>

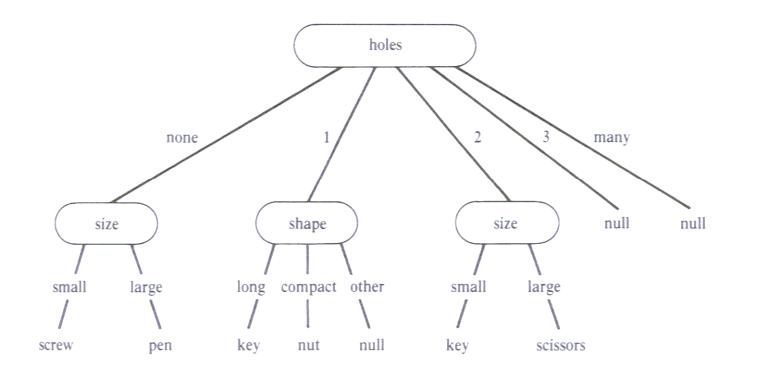
• Heuristic scoring of an attribute value

score(Examples, Class, AttributeValue, Score)



The heuristic score of the attribute value is the # of positive examples in ATTVAL minus the # of negative examples in ATTVAL.

⊙Induced decision tree: An example



Learning from noisy data and tree pruning

Onoise in learning

errors in attribute values and class values

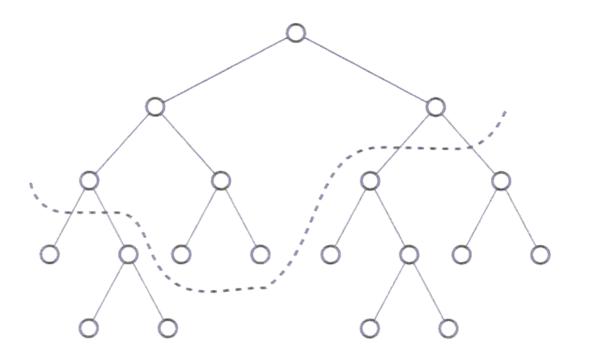
Otree pruning

- take into account
 - the number of examples in the node
 - the prevalence of the majority class at the node
 - to what extent an additional attribute selected at this node would reduce the impurity of the example set
- to decide whether to stop expanding the tree or not
- forward pruning and post-pruning

Jong C. Park

Learning from noisy data and tree pruning

OPruning of decision trees



Success of learning

OCriteria for success of learning

- classification accuracy
 - accuracy on new objects
 - accuracy on the objects in S
- comprehensibility (understandability)
- computational complexity
 - generation complexity
 - execution complexity

Learning concepts from examples
Learning relational descriptions
Learning simple if-then rules
Induction of decision trees
Learning from noisy data and tree pruning

⊙Success of learning