
CS370

Symbolic Programming
Declarative Programming

LECTURE 18: Language Processing

Symbolic Programming
Declarative Programming

LECTURE 18: Language Processing

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Language Processing
with Grammar Rules

Grammar rules in Prolog
Handling meaning
Defining the meaning of natural
language

3 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Grammar
A formal device for defining sets of sequences
of symbols
Example: BNF (Backus-Naur Form)

Production rules
<s> ::= a b
<s> ::= a <s> b

Terminology
Non-terminals, Terminals, Sentences
Generation, Recognition
Parsing

4 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Further Example: Motions of a robot
arm

Example command sequences
up
up up down up down

Sample Grammar
<move> ::= <step>
<move> ::= <step> <move>
<step> ::= up
<step> ::= down

5 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Definite Clause Grammar
Example transformation for DCG

s --> [a], [b].
s --> [a], s, [b].
move --> step.
move --> step, move.
step --> [up].
step --> [down].

In Prolog implementations that accept the
DCG notation, the transformed grammars can
be used as recognizers of sentences.

6 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Definite Clause Grammar
?- s([a,a,b,b], []).
yes
?- s([a,a,b], []).
no
?- move([up,up,down], []).
yes
?- move([up,up,left], []).
no
?- move([up,X,up], []).
X = up;
X = down;
no

7 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Definite Clause Grammar
Prolog converts the given DCG rules into a
program for recognizing sentences generated
by the grammar.
move(List, Rest) :-

step(List, Rest).
move(List1, Rest) :-

step(List1, List2), move(List2, Rest).
step([up|Rest], Rest).
step([down|Rest], Rest).

8 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Figure 21.1

9 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Translation of DCG into standard
Prolog

Example 1
n --> n1, n2, …, nn.
n(List1,Rest) :- n1(List1, List2),

n2(List2, List3),
…,
nn(Listn, Rest).

Example 2
n --> n1, [t2], n3, [t4].
n(List1,Rest) :- n1(List1, [t2|List3]),

n3(List3, [t4|Rest]).

10 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

DCG: Further Examples
English grammar
sentence --> noun_phrase, verb_phrase.
verb_phrase --> verb, noun_phrase.
noun_phrase --> determiner, noun.
determiner --> [a].
determiner --> [the].
noun --> [cat].
noun --> [mouse].
verb --> [scares].
verb --> [hates].

11 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Example sentences
[the, cat, scares, a, mouse]
[the, mouse, hates, the, cat]

Extension
[the, mice, hate, the, cats]

Extended Grammar
noun --> [mice].
verb --> [hate].

12 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Problem
[the, mouse, hate, the, cat]

Adding arguments to non-terminal
symbols
setence(Number) --> noun_phrase(Number),

verb_phrase(Number).
verb_phrase(Number) --> verb(Number),

noun_phrase(Number1).
noun_phrase(Number) --> det(Number),

noun(Number).
noun(singular) --> [mouse].
noun(plural) --> [mice].

13 Symbolic ProgrammingJong C. Park

Handling meaning

Constructing parse trees

14 Symbolic ProgrammingJong C. Park

Handling meaning

Constructing parse trees
The parse tree of a phrase is a tree such that

All the leaves of the tree are labeled by terminal
symbols of the grammar.
All the internal nodes of the tree are labeled by non-
terminal symbols; the root of the tree is labeled by
the non-terminal that corresponds to the phrase.
The parent-children relation in the tree is as
specified by the rules of the grammar.

15 Symbolic ProgrammingJong C. Park

Handling meaning

Constructing parse trees
Modification of a DCG grammar to generate a
parse tree

noun_phrase(DetTree, NounTree)
noun_phrase(noun_phrase(DetTree, NounTree))

-->
det(DetTree), noun(NounTree).

16 Symbolic ProgrammingJong C. Park

Handling meaning

From the parse tree to the meaning

17 Symbolic ProgrammingJong C. Park

Handling meaning

From the parse tree to the meaning
One approach to extract the meaning

Generate the parse tree of the given sentence
Process the parse tree to compute the meaning

move(move(Step)) --> step(Step).
move(move(Step, Move)) -->

step(Step), move(Move).
step(step(up)) --> [up].
step(step(down)) --> [down].

18 Symbolic ProgrammingJong C. Park

Handling meaning

From the parse tree to the meaning
One approach to extract the meaning

Generate the parse tree of the given sentence
Process the parse tree to compute the meaning

meaning(move(Step, Move), Dist) :-
meaning(Step, D1),
meaning(Move, D2),
Dist is D1 + D2.

meaning(move(Step), Dist) :- meaning(Step, Dist).
meaning(step(up), 1).
meaning(step(down), -1).

19 Symbolic ProgrammingJong C. Park

Handling meaning

From the parse tree to the meaning
One approach to extract the meaning

Generate the parse tree of the given sentence
Process the parse tree to compute the meaning

?- move(Tree, [up, up, down, up], []),
meaning(Tree, Dist).

Dist = 2
Tree = move(step(up), move(step(up),

move(step(down), move(step(up)))))

20 Symbolic ProgrammingJong C. Park

Handling meaning

Interleaving syntax and semantics in
DCG

move(Dist)
A move phrase whose meaning is Dist

move(D) --> step(D).
move(D) --> step(D1), move(D2), {D is D1 + D2}.
step(1) --> [up].
step(-1) --> [down].

21 Symbolic ProgrammingJong C. Park

Handling meaning

Interleaving syntax and semantics in
DCG

move(Dist): Use gears
Examples

stop
g1 up up stop
g1 up up g2 down up stop
g1 g1 g2 up up g1 up down up g2 stop

22 Symbolic ProgrammingJong C. Park

Handling meaning

Program
prog(0) --> [stop].
prog(Dist) --> gear(_), prog(Dist).
prog(Dist) --> gear(G), move(D),

prog(Dist1), {Dist is G*D + Dist1}.
gear(1) --> [g1].
gear(2) --> [g2].

23 Symbolic ProgrammingJong C. Park

Defining the meaning of natural language

24 Symbolic ProgrammingJong C. Park

Defining the meaning of natural language

Meaning of simple sentences in logic
[1]
proper_noun(john) --> [john].
intrans_verb(paints(X)) --> [paints].
noun_phrase(NP) --> proper_noun(NP).
verb_phrase(VP) --> intrans_verb(VP).
sentence(S) --> noun_phrase(NP), verb_phrase(VP),

{compose(NP,VP,S)}.
actor(paints(X),X).
compose(NP,VP,VP) :- actor(VP,NP).

25 Symbolic ProgrammingJong C. Park

Defining the meaning of natural language

Meaning of simple sentences in logic
[2]
proper_noun(john) --> [john].
intrans_verb(Actor,paints(Actor)) --> [paints].
noun_phrase(NP) --> proper_noun(NP).
verb_phrase(Actor,VP) --> intrans_verb(Actor,VP).
sentence(VP) --> noun_phrase(Actor),

verb_phrase(Actor,VP).

26 Symbolic ProgrammingJong C. Park

Defining the meaning of natural language

27 Symbolic ProgrammingJong C. Park

Defining the meaning of natural language

Meaning of determiners ‘a’ and ‘every’
A man paints.

There exists an X such that X is a man and X paints.
exists(X,man(X) and paints(X))
exists(X,man(X) and Assertion)
exists(X,Property and Assertion)

:- op(100,xfy,and).
det(a,Prop,Assn,exists(X,Prop and Assn)) --> [a].

Every woman dances.
all(X,woman(X) => dances(X))

det(a,Prop,Assn,all(X,Prop => Assn)) --> [every].

28 Symbolic ProgrammingJong C. Park

Defining the meaning of natural language

Meaning of determiners ‘a’ and
‘every’
sentence(S) --> noun_phrase(X,Assn,S),

verb_phrase(X,Assn).
noun_phrase(X,Assn,S) --> det(X,Prop,Assn,S),

noun(X,Prop).
verb_phrase(X,Assn) --> intrans_verb(X,Assn).
intrans_verb(X,paints(X)) --> [paints].
det(X,Prop,Assn,exists(X,Prop and Assn)) --> [a].
noun(X,man(X)) --> [man].
proper_noun(john) --> [john].
noun_phrase(X,Assn,Assn) --> proper_noun(X).

29 Symbolic ProgrammingJong C. Park

Summary

Grammar rules in Prolog
Handling meaning
Defining the meaning of natural
language

