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Language Processing 
with Grammar Rules

Grammar rules in Prolog
Handling meaning
Defining the meaning of natural 
language
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Grammar rules in Prolog

Grammar
A formal device for defining sets of sequences 
of symbols
Example: BNF (Backus-Naur Form)

Production rules
<s> ::= a b
<s> ::= a <s> b

Terminology
Non-terminals, Terminals, Sentences
Generation, Recognition
Parsing
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Grammar rules in Prolog

Further Example: Motions of a robot 
arm

Example command sequences
up
up up down up down

Sample Grammar
<move> ::= <step>
<move> ::= <step> <move>
<step> ::= up
<step> ::= down
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Grammar rules in Prolog

Definite Clause Grammar
Example transformation for DCG

s --> [a], [b].
s --> [a], s, [b].
move --> step.
move --> step, move.
step --> [up].
step --> [down]. 

In Prolog implementations that accept the 
DCG notation, the transformed grammars can 
be used as recognizers of sentences. 
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Grammar rules in Prolog

Definite Clause Grammar
?- s([a,a,b,b], [ ]).
yes
?- s([a,a,b], [ ]).
no
?- move([up,up,down], [ ]).
yes
?- move([up,up,left], [ ]).
no
?- move([up,X,up], [ ]).
X = up;
X = down;
no



7 Symbolic ProgrammingJong C. Park

Grammar rules in Prolog

Definite Clause Grammar
Prolog converts the given DCG rules into a 
program for recognizing sentences generated 
by the grammar.
move(List, Rest) :-

step(List, Rest).
move(List1, Rest) :-

step(List1, List2), move(List2, Rest).
step([up|Rest], Rest).
step([down|Rest], Rest).
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Grammar rules in Prolog

Figure 21.1
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Grammar rules in Prolog

Translation of DCG into standard 
Prolog

Example 1
n --> n1, n2, …, nn.
n(List1,Rest) :- n1(List1, List2), 

n2(List2, List3), 
…, 
nn(Listn, Rest).

Example 2
n --> n1, [t2], n3, [t4].
n(List1,Rest) :- n1(List1, [t2|List3]), 

n3(List3, [t4|Rest]).
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Grammar rules in Prolog

DCG: Further Examples
English grammar
sentence --> noun_phrase, verb_phrase.
verb_phrase --> verb, noun_phrase.
noun_phrase --> determiner, noun.
determiner --> [a].
determiner --> [the].
noun --> [cat].
noun --> [mouse].
verb --> [scares].
verb --> [hates].
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Grammar rules in Prolog

Example sentences
[the, cat, scares, a, mouse]
[the, mouse, hates, the, cat]

Extension
[the, mice, hate, the, cats]

Extended Grammar
noun --> [mice].
verb --> [hate].
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Grammar rules in Prolog

Problem
[the, mouse, hate, the, cat]

Adding arguments to non-terminal 
symbols
setence(Number) --> noun_phrase(Number), 

verb_phrase(Number).
verb_phrase(Number) --> verb(Number), 

noun_phrase(Number1).
noun_phrase(Number) --> det(Number), 

noun(Number).
noun(singular) --> [mouse].
noun(plural) --> [mice].
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Handling meaning

Constructing parse trees
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Handling meaning

Constructing parse trees
The parse tree of a phrase is a tree such that

All the leaves of the tree are labeled by terminal 
symbols of the grammar.
All the internal nodes of the tree are labeled by non-
terminal symbols; the root of the tree is labeled by 
the non-terminal that corresponds to the phrase.
The parent-children relation in the tree is as 
specified by the rules of the grammar.
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Handling meaning

Constructing parse trees
Modification of a DCG grammar to generate a 
parse tree

noun_phrase(DetTree, NounTree)
noun_phrase(noun_phrase(DetTree, NounTree)) 

-->
det(DetTree), noun(NounTree).
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Handling meaning

From the parse tree to the meaning



17 Symbolic ProgrammingJong C. Park

Handling meaning

From the parse tree to the meaning
One approach to extract the meaning

Generate the parse tree of the given sentence
Process the parse tree to compute the meaning

move(move(Step)) --> step(Step).
move(move(Step, Move)) --> 

step(Step), move(Move).
step(step(up)) --> [up].
step(step(down)) --> [down].
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Handling meaning

From the parse tree to the meaning
One approach to extract the meaning

Generate the parse tree of the given sentence
Process the parse tree to compute the meaning

meaning(move(Step, Move), Dist) :-
meaning(Step, D1),
meaning(Move, D2), 
Dist is D1 + D2.

meaning(move(Step), Dist) :- meaning(Step, Dist).
meaning(step(up), 1).
meaning(step(down), -1).
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Handling meaning

From the parse tree to the meaning
One approach to extract the meaning

Generate the parse tree of the given sentence
Process the parse tree to compute the meaning

?- move(Tree, [up, up, down, up], [ ]), 
meaning(Tree, Dist).

Dist = 2
Tree = move(step(up), move(step(up), 

move(step(down), move(step(up)))) )
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Handling meaning

Interleaving syntax and semantics in 
DCG

move(Dist)
A move phrase whose meaning is Dist

move(D) --> step(D).
move(D) --> step(D1), move(D2), {D is D1 + D2}.
step(1) --> [up].
step(-1) --> [down].
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Handling meaning

Interleaving syntax and semantics in 
DCG

move(Dist): Use gears
Examples

stop
g1 up up stop
g1 up up g2 down up stop
g1 g1 g2 up up g1 up down up g2 stop
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Handling meaning

Program
prog(0) --> [stop].
prog(Dist) --> gear(_), prog(Dist).
prog(Dist) --> gear(G), move(D), 

prog(Dist1), {Dist is G*D + Dist1}.
gear(1) --> [g1].
gear(2) --> [g2].
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Defining the meaning of natural language
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Defining the meaning of natural language

Meaning of simple sentences in logic 
[1]
proper_noun(john) --> [john].
intrans_verb(paints(X)) --> [paints].
noun_phrase(NP) --> proper_noun(NP).
verb_phrase(VP) --> intrans_verb(VP).
sentence(S) --> noun_phrase(NP), verb_phrase(VP), 

{compose(NP,VP,S)}.
actor(paints(X),X).
compose(NP,VP,VP) :- actor(VP,NP).
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Defining the meaning of natural language

Meaning of simple sentences in logic 
[2]
proper_noun(john) --> [john].
intrans_verb(Actor,paints(Actor)) --> [paints].
noun_phrase(NP) --> proper_noun(NP).
verb_phrase(Actor,VP) --> intrans_verb(Actor,VP).
sentence(VP) --> noun_phrase(Actor), 

verb_phrase(Actor,VP).
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Defining the meaning of natural language
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Defining the meaning of natural language

Meaning of determiners ‘a’ and ‘every’
A man paints.

There exists an X such that X is a man and X paints.
exists(X,man(X) and paints(X))
exists(X,man(X) and Assertion)
exists(X,Property and Assertion)

:- op(100,xfy,and).
det(a,Prop,Assn,exists(X,Prop and Assn)) --> [a].

Every woman dances.
all(X,woman(X) => dances(X))

det(a,Prop,Assn,all(X,Prop => Assn)) --> [every].
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Defining the meaning of natural language

Meaning of determiners ‘a’ and 
‘every’
sentence(S) --> noun_phrase(X,Assn,S),

verb_phrase(X,Assn).
noun_phrase(X,Assn,S) --> det(X,Prop,Assn,S), 

noun(X,Prop).
verb_phrase(X,Assn) --> intrans_verb(X,Assn).
intrans_verb(X,paints(X)) --> [paints].
det(X,Prop,Assn,exists(X,Prop and Assn)) --> [a].
noun(X,man(X)) --> [man].
proper_noun(john) --> [john].
noun_phrase(X,Assn,Assn) --> proper_noun(X).
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Summary

Grammar rules in Prolog
Handling meaning
Defining the meaning of natural 
language


