
CS370

Symbolic Programming
Declarative Programming

LECTURE 19: Game Playing

Symbolic Programming
Declarative Programming

LECTURE 19: Game Playing

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Game Playing

Two-person, perfect-information
games
The minimax principle
The alpha-beta algorithm

an efficient implementation of minimax

Minimax-based programs
refinements and limitations

3 Symbolic ProgrammingJong C. Park

Two-person, perfect-information games

The setting
Two players, us and them, make moves
alternatively.
Both players have the complete information of
the current situation in the game.
The game is over when a position is reached
that qualifies as ‘terminal’ by the rules of the
game.
The rules determine outcome of the game: win
and loss. (cf. if draw win, not-win)

Examples
Chess, checkers, and go

4 Symbolic ProgrammingJong C. Park

Two-person, perfect-information games

Concepts in games and AND/OR
trees

game positions problems
terminal won position goal node, trivially
solved problem
terminal lost position unsolvable problem
won position solved problem
us-to-move position OR node
them-to-move position AND node

Many concepts from searching
AND/OR trees can be adapted for
searching game trees.

5 Symbolic ProgrammingJong C. Park

Two-person, perfect-information games

A simple Prolog program to find
whether an us-to-move position is
won or not

won(Pos) :-
terminalwon(Pos).

won(Pos) :-
not terminallost(Pos),
move(Pos,Pos1),
not (move(Pos1,Pos2),not won(Pos2)).

6 Symbolic ProgrammingJong C. Park

Two-person, perfect-information games

The combinatorial complexity makes
the naive search algorithm
completely infeasible.

The search space of astronomical proportions
of the chess game includes some 10120

positions.
It can be argued that equal positions in the
tree of Figure 22.1 occur at different places.
But it has also been shown that the number
of different positions is far beyond anything
manageable by foreseeable computers.

7 Symbolic ProgrammingJong C. Park

Two-person, perfect-information games

8 Symbolic ProgrammingJong C. Park

The minimax principle

Game playing with the minimax
principle

A game tree is searched only up to a certain
depth, typically a few moves, and then the
tip nodes of the search tree are evaluated by
some evaluation function.

The idea is to assess these terminal search position
estimates without searching beyond them, thus
saving time.

The terminal position estimates propagate
up the search tree according to the minimax
principle.

9 Symbolic ProgrammingJong C. Park

The minimax principle

The former yields position values for all the
positions in the search tree.
The move that leads from the initial, root
position to its most promising successor is
then actually played in the game.

10 Symbolic ProgrammingJong C. Park

The minimax principle

Game tree vs. search tree
A search tree is normally a part of the game
tree (upper part) – that is, the part that is
explicitly generated by the search process.
Thus, terminal search positions do not have
to be terminal positions of the game.

11 Symbolic ProgrammingJong C. Park

The minimax principle

The evaluation function
It must be a heuristic estimator that
estimates the winning chances from the point
of view of one of the players.
The higher the value the higher the player’s
chances are to win, and the lower the value
the higher the opponent’s chances are to win.
Whenever MAX is to move, she will choose a
move that maximizes the value; on the
contrary, MIN will choose a move that
minimizes the value.

12 Symbolic ProgrammingJong C. Park

The minimax principle

value propagation

main variation

The main variation defines the ‘minimax optimal’ play for both sides.

13 Symbolic ProgrammingJong C. Park

The minimax principle

The bottom-level values vs. the
backed-up values

The bottom-level values are static, since they
are obtained by a ‘static’ evaluation function.
The backed-up values are obtained
dynamically by propagation of static values
up the tree.

14 Symbolic ProgrammingJong C. Park

The minimax principle

The value propagation rules
v(P): the static value of a position P
V(P): the backed-up value of a position P
P1, ..., Pn: legal successor position of P
The relation between static values and
backed-up values:

V(P) = v(P) if P is a terminal position in a search
tree (n = 0)
V(P) = maxi V(Pi) if P is a MAX-to-move position
V(P) = mini V(Pi) if P is a MIN-to-move position

15 Symbolic ProgrammingJong C. Park

The minimax principle

minimax(Pos, BestSucc, Val)

minimax(Pos, BestSucc, Val) :- moves(Pos, PosList), !,
best(PosList, BestSucc, Val) ; staticval(Pos, Val).

best([Pos], Pos, Val) :- minimax(Pos, _, Val), !.
best([Pos1 | PosList], BestPos, BestVal) :-

minimax(Pos1, _, Val1), best(PosList, Pos2, Val2),
betterof(Pos1, Val1, Pos2, Val2, BestPos, BestVal).

betterof(Pos0, Val0, Pos1, Val1, Pos0, Val0) :-
min_to_move(Pos0), Val0 > Val1, ! ;
max_to_move(Pos0), Val0 < Val1, !.

betterof(Pos0, Val0, Pos1, Val1, Pos1, Val1).

16 Symbolic ProgrammingJong C. Park

The alpha-beta algorithm

Motivation
Problems of the program in Figure 22.3

The program visits all the positions in the search
tree, up to its terminal positions in a depth-first
fashion, and statistically evaluates all the terminal
positions of this tree.
Usually not all this work is necessary in order to
correctly compute the minimax value of the root
position.

17 Symbolic ProgrammingJong C. Park

The alpha-beta algorithm

Idea
Suppose that there are two alternative
moves; once one of them has been shown to
be clearly inferior to the other, it is not
necessary to know exactly how much inferior
it is for making the correct decision.

18 Symbolic ProgrammingJong C. Park

The alpha-beta algorithm

Example

a b d e c f

19 Symbolic ProgrammingJong C. Park

The alpha-beta algorithm

Alpha-beta pruning
The key idea is to find a ‘good enough’ move,
not necessarily the best, that is sufficiently
good to make the correct decision.
We use two bounds, Alpha and Beta, on the
backed-up value of a position.

Alpha is the minimal value that MAX is already
guaranteed to achieve.
Beta is the maximal value that MAX can hope to
achieve.
From MIN’s point of view, Beta is the worst value
for MIN that MIN is guaranteed to achieve.

20 Symbolic ProgrammingJong C. Park

The alpha-beta algorithm

Alpha-beta pruning
If a position has been shown to have a value
that lies outside the Alpha-Beta interval, then
this is sufficient to know that this position is
not in the main variation, without knowing
the exact value of this position.
‘Good enough’ backed-up value V(P, Alpha,
Beta) of a position P, with respect to Alpha
and Beta, is defined to be as any value that
satisfies:

V(P,Alpha,Beta) < Alpha if V(P) < Alpha
V(P,Alpha,Beta) = V(P) if Alpha <= V(P) <= Beta
V(P,Alpha,Beta) > Beta if V(P) > Beta

If P is the root, V(P, -infinity, +infinity) = V(P).

21 Symbolic ProgrammingJong C. Park

The alpha-beta algorithm

The alpha-beta algorithm (Figure 22.5)

alphabeta(Pos, Alpha, Beta, GoodPos, Val) :-
moves(Pos, PosList), !,
boundedbest(Poslist, Alpha, Beta, GoodPos, Val)
;
staticval(Pos, Val).

boundedbest([Pos|PosList], Alpha, Beta, GoodPos,
GoodVal) :-
alphabeta(Pos, Alpha, Beta, _, Val),
goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos,
GoodVal).

22 Symbolic ProgrammingJong C. Park

The alpha-beta algorithm

The alpha-beta algorithm (Figure 22.5)

goodenough([], _, _, Pos, Val, Pos, Val) :- !.
goodenough(_, Alpha, Beta, Pos, Val, Pos, Val) :-

min_to_move(Pos), Val > Beta, !;
max_to_move(Pos), Val < Alpha, !.

23 Symbolic ProgrammingJong C. Park

Minimax-based programs

Background
The minimax principle, together with the
alpha-beta algorithm, is the basis of many
successful game-playing programs, most
notably chess programs.
The general scheme:

Perform the alpha-beta search on the current
position in the game, up to some fixed depth limit
(dictated by the time constraints), using a game-
specific evaluation function for evaluating the
terminal positions of the search.
Then execute the best move on the play board,
accept the opponent’s reply, and start the same
cycle again.

24 Symbolic ProgrammingJong C. Park

Minimax-based programs

Refinements [1]
Distinguish turbulent positions from quiescent
positions in setting the depth limit.

We should use the static evaluation only in
quiescent positions.
The standard trick is to extend the search in
turbulent positions beyond the depth limit until a
quiescent position is reached.

25 Symbolic ProgrammingJong C. Park

Minimax-based programs

Refinements [2]
Use heuristic pruning.

Achieve a greater depth limit by disregarding some
less promising continuations.
Prune branches in addition to those that are pruned
by the alpha-beta technique itself.
This entails the risk of overlooking some good
continuation and incorrectly computing the minimax
value.

26 Symbolic ProgrammingJong C. Park

Minimax-based programs

Refinements [3]
Use progressive deepening.

The program repeatedly executes the alpha-beta
search, first to some shallow depth, and then
increases the depth limit on each iteration.
The process stops when the time limit has been
reached.
The best move according to the deepest search is
then played.
Advantages

Enables the time control.
The minimax values of the previous iteration can
be used for preliminary ordering of positions on
the next iteration, helping the alpha-beta
algorithm to search strong moves first.

27 Symbolic ProgrammingJong C. Park

Minimax-based programs

Refinements
Deal with the horizon effect.

Imagine a chess position in which the program’s
side inevitably loses a knight.
But the loss of the knight can be delayed at the cost
of a lesser sacrifice, say a pawn.
This intermediate sacrifice may push the actual loss
of the knight beyond the search limit (beyond the
program’s ‘horizon’).
Not seeing the eventual loss of the knight, the
program will then prefer this variation to the quick
death of the knight, eventually losing both the pawn
and the knight.
Solution?

28 Symbolic ProgrammingJong C. Park

Minimax-based programs

Limitations
Differences of human (master) players vs.
computer programs

The use of domain knowledge
evaluation function
tree-pruning heuristics
quiescence heuristics

29 Symbolic ProgrammingJong C. Park

Summary

Two-person, perfect-information
games
The minimax principle
The alpha-beta algorithm
Minimax-based programs

