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Game Playing

Two-person, perfect-information 
games
The minimax principle
The alpha-beta algorithm

an efficient implementation of minimax

Minimax-based programs
refinements and limitations
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Two-person, perfect-information games

The setting
Two players, us and them, make moves 
alternatively.
Both players have the complete information of 
the current situation in the game.
The game is over when a position is reached 
that qualifies as ‘terminal’ by the rules of the 
game. 
The rules determine outcome of the game: win 
and loss. (cf. if draw win, not-win)

Examples
Chess, checkers, and go
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Two-person, perfect-information games

Concepts in games and AND/OR 
trees

game positions problems
terminal won position goal node, trivially 
solved problem
terminal lost position unsolvable problem
won position solved problem
us-to-move position OR node
them-to-move position AND node

Many concepts from searching 
AND/OR trees can be adapted for 
searching game trees.
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Two-person, perfect-information games

A simple Prolog program to find 
whether an us-to-move position is 
won or not

won(Pos) :-
terminalwon(Pos).

won(Pos) :-
not terminallost(Pos),
move(Pos,Pos1),
not (move(Pos1,Pos2),not won(Pos2)).
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Two-person, perfect-information games

The combinatorial complexity makes 
the naive search algorithm 
completely infeasible.

The search space of astronomical proportions 
of the chess game includes some 10120

positions.
It can be argued that equal positions in the 
tree of Figure 22.1 occur at different places.
But it has also been shown that the number 
of different positions is far beyond anything 
manageable by foreseeable computers.
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Two-person, perfect-information games
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The minimax principle

Game playing with the minimax
principle

A game tree is searched only up to a certain 
depth, typically a few moves, and then the 
tip nodes of the search tree are evaluated by 
some evaluation function.

The idea is to assess these terminal search position 
estimates without searching beyond them, thus 
saving time.

The terminal position estimates propagate 
up the search tree according to the minimax
principle.
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The minimax principle

The former yields position values for all the 
positions in the search tree.
The move that leads from the initial, root 
position to its most promising successor is 
then actually played in the game.
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The minimax principle

Game tree vs. search tree
A search tree is normally a part of the game 
tree (upper part) – that is, the part that is 
explicitly generated by the search process.
Thus, terminal search positions do not have 
to be terminal positions of the game.
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The minimax principle

The evaluation function
It must be a heuristic estimator that 
estimates the winning chances from the point 
of view of one of the players.
The higher the value the higher the player’s 
chances are to win, and the lower the value 
the higher the opponent’s chances are to win.
Whenever MAX is to move, she will choose a 
move that maximizes the value; on the 
contrary, MIN will choose a move that 
minimizes the value.
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The minimax principle

value propagation

main variation

The main variation defines the ‘minimax optimal’ play for both sides.
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The minimax principle

The bottom-level values vs. the 
backed-up values

The bottom-level values are static, since they 
are obtained by a ‘static’ evaluation function.
The backed-up values are obtained 
dynamically by propagation of static values 
up the tree.
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The minimax principle

The value propagation rules
v(P): the static value of a position P
V(P): the backed-up value of a position P
P1, ..., Pn: legal successor position of P
The relation between static values and 
backed-up values:

V(P) = v(P) if P is a terminal position in a search 
tree (n = 0)
V(P) = maxi V(Pi) if P is a MAX-to-move position
V(P) = mini V(Pi) if P is a MIN-to-move position



15 Symbolic ProgrammingJong C. Park

The minimax principle

minimax(Pos, BestSucc, Val)

minimax(Pos, BestSucc, Val) :- moves(Pos, PosList), !, 
best(PosList, BestSucc, Val) ; staticval(Pos, Val).

best([Pos], Pos, Val) :- minimax(Pos, _, Val), !.
best([Pos1 | PosList], BestPos, BestVal) :-

minimax(Pos1, _, Val1), best(PosList, Pos2, Val2),
betterof(Pos1, Val1, Pos2, Val2, BestPos, BestVal).

betterof(Pos0, Val0, Pos1, Val1, Pos0, Val0) :-
min_to_move(Pos0), Val0 > Val1, ! ;
max_to_move(Pos0), Val0 < Val1, !.

betterof(Pos0, Val0, Pos1, Val1, Pos1, Val1).



16 Symbolic ProgrammingJong C. Park

The alpha-beta algorithm

Motivation
Problems of the program in Figure 22.3

The program visits all the positions in the search 
tree, up to its terminal positions in a depth-first 
fashion, and statistically evaluates all the terminal 
positions of this tree.
Usually not all this work is necessary in order to 
correctly compute the minimax value of the root 
position.
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The alpha-beta algorithm

Idea
Suppose that there are two alternative 
moves; once one of them has been shown to 
be clearly inferior to the other, it is not 
necessary to know exactly how much inferior 
it is for making the correct decision.
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The alpha-beta algorithm

Example

a b d e c f
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The alpha-beta algorithm

Alpha-beta pruning
The key idea is to find a ‘good enough’ move, 
not necessarily the best, that is sufficiently 
good to make the correct decision.
We use two bounds, Alpha and Beta, on the 
backed-up value of a position.

Alpha is the minimal value that MAX is already 
guaranteed to achieve.
Beta is the maximal value that MAX can hope to 
achieve.
From MIN’s point of view, Beta is the worst value 
for MIN that MIN is guaranteed to achieve.
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The alpha-beta algorithm

Alpha-beta pruning
If a position has been shown to have a value 
that lies outside the Alpha-Beta interval, then 
this is sufficient to know that this position is 
not in the main variation, without knowing 
the exact value of this position.
‘Good enough’ backed-up value V(P, Alpha, 
Beta) of a position P, with respect to Alpha
and Beta, is defined to be as any value that 
satisfies:

V(P,Alpha,Beta) < Alpha if V(P) < Alpha
V(P,Alpha,Beta) = V(P) if Alpha <= V(P) <= Beta
V(P,Alpha,Beta) > Beta if V(P) > Beta

If P is the root, V(P, -infinity, +infinity) = V(P).
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The alpha-beta algorithm

The alpha-beta algorithm (Figure 22.5)

alphabeta(Pos, Alpha, Beta, GoodPos, Val) :-
moves(Pos, PosList), !, 
boundedbest(Poslist, Alpha, Beta, GoodPos, Val)
; 
staticval(Pos, Val). 

boundedbest([Pos|PosList], Alpha, Beta, GoodPos, 
GoodVal) :-
alphabeta(Pos, Alpha, Beta, _, Val), 
goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, 
GoodVal).
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The alpha-beta algorithm

The alpha-beta algorithm (Figure 22.5)

goodenough([ ], _, _, Pos, Val, Pos, Val) :- !.
goodenough(_, Alpha, Beta, Pos, Val, Pos, Val) :-

min_to_move(Pos), Val > Beta, !;
max_to_move(Pos), Val < Alpha, !.
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Minimax-based programs

Background
The minimax principle, together with the 
alpha-beta algorithm, is the basis of many 
successful game-playing programs, most 
notably chess programs.
The general scheme: 

Perform the alpha-beta search on the current 
position in the game, up to some fixed depth limit 
(dictated by the time constraints), using a game-
specific evaluation function for evaluating the 
terminal positions of the search.
Then execute the best move on the play board, 
accept the opponent’s reply, and start the same 
cycle again.
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Minimax-based programs

Refinements [1]
Distinguish turbulent positions from quiescent 
positions in setting the depth limit.

We should use the static evaluation only in 
quiescent positions.
The standard trick is to extend the search in 
turbulent positions beyond the depth limit until a 
quiescent position is reached.
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Minimax-based programs

Refinements [2]
Use heuristic pruning.

Achieve a greater depth limit by disregarding some 
less promising continuations.
Prune branches in addition to those that are pruned 
by the alpha-beta technique itself.
This entails the risk of overlooking some good 
continuation and incorrectly computing the minimax
value.
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Minimax-based programs

Refinements [3]
Use progressive deepening.

The program repeatedly executes the alpha-beta 
search, first to some shallow depth, and then 
increases the depth limit on each iteration.
The process stops when the time limit has been 
reached.
The best move according to the deepest search is 
then played.
Advantages

Enables the time control.
The minimax values of the previous iteration can 
be used for preliminary ordering of positions on 
the next iteration, helping the alpha-beta 
algorithm to search strong moves first. 
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Minimax-based programs

Refinements 
Deal with the horizon effect.

Imagine a chess position in which the program’s 
side inevitably loses a knight.
But the loss of the knight can be delayed at the cost 
of a lesser sacrifice, say a pawn.
This intermediate sacrifice may push the actual loss 
of the knight beyond the search limit (beyond the 
program’s ‘horizon’).
Not seeing the eventual loss of the knight, the 
program will then prefer this variation to the quick 
death of the knight, eventually losing both the pawn 
and the knight.
Solution?
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Minimax-based programs

Limitations
Differences of human (master) players vs. 
computer programs

The use of domain knowledge
evaluation function
tree-pruning heuristics
quiescence heuristics
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Summary

Two-person, perfect-information 
games
The minimax principle
The alpha-beta algorithm
Minimax-based programs


