
CS370

Symbolic Programming
Declarative Programming

LECTURE 5: Lists, Operators, and Arithmetic

Symbolic Programming
Declarative Programming

LECTURE 5: Lists, Operators, and Arithmetic

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Lists, Operators and Arithmetic

Representation of lists
Some operations on lists
Operator notation
Arithmetic

3 Symbolic ProgrammingJong C. Park

Representation of lists

Note
All structured objects in Prolog are trees.

Example lists
[anna, tennis, tom, skiing]
.(anna, .(tennis, .(tom, .(skiing, []))))

?- List1 = [a,b,c], List2 = .(a, .(b, .(c, []))).
List1 = [a,b,c], List2 = [a,b,c].

[a,b,c] = [a|[b,c]] = [a,b|[c]] = [a,b,c|[]]

4 Symbolic ProgrammingJong C. Park

Representation of lists

A list is a data structure that is either
empty or consists of two parts: a
head and a tail.

The tail itself has to be a list.

Lists are handled in Prolog as a
special case of binary trees.

5 Symbolic ProgrammingJong C. Park

Some operations on lists

Membership
Concatenation
Adding an item
Deleting an item
Sublist
Permutations
Problems

6 Symbolic ProgrammingJong C. Park

Some operations on lists

MEMBERSHIP
The membership relation
member(X,L)
Intended behavior
?- member(b,[a,b,c]).
yes
?- member(b,[a,[b,c]]).
no
?- member([b,c],[a,[b,c]]).
yes

7 Symbolic ProgrammingJong C. Park

Some operations on lists

Observation
X is a member of L if either:

X is the head of L, or
X is a member of the tail of L.

Sample program
member(X,[X|Tail]).
member(X,[Head|Tail]) :-

member(X,Tail).

8 Symbolic ProgrammingJong C. Park

Some operations on lists

CONCATENATION
The concatenation relation
conc(L1,L2,L3)
Intended behavior
?- conc([a,b],[c,d],[a,b,c,d]).
yes
?- conc([a,b],[c,d],[a,b,a,c,d]).
no

9 Symbolic ProgrammingJong C. Park

Some operations on lists

Observation
If the first argument is the empty list then the
second and the third arguments must be the same
list.

conc([], L, L).
Otherwise the first argument has a head and a tail
and must look like [X|L1].

conc([X|L1],L2,[X|L3]) :-
conc(L1,L2,L3).

10 Symbolic ProgrammingJong C. Park

Some operations on lists

Decomposition
We can use the conc program to decompose a given
list into two lists.

?- conc(L1,L2,[a,b,c]).
L1 = []
L2 = [a,b,c];
L1 = [a]
L2 = [b,c];
L1 = [a,b]
L2 = [c];
L1 = [a,b,c]
L2 = []

11 Symbolic ProgrammingJong C. Park

Some operations on lists

Pattern matching
We can use the program to look for a certain
pattern in a list.

?- conc(Before,[may|After],
[jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec]).

Before = [jan,feb,mar,apr]
After = [jun,jul,aug,sep,oct,nov,dec]
?- conc(_,[Month1,may,Month2|_],

[jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec]).
Month1 = apr
Month2 = jun

12 Symbolic ProgrammingJong C. Park

Some operations on lists

What are these for?
?- L1 = [a,b,z,z,c,z,z,z,d,e],

conc(L2,[z,z,z|_],L1).

program(X,L) :-
conc(L1,[X|L2],L).

member(X,L) :-
conc(L1,[X|L2],L).

13 Symbolic ProgrammingJong C. Park

Some operations on lists

ADDING AN ITEM
Very simple!
add(X,L,[X|L]).

14 Symbolic ProgrammingJong C. Park

Some operations on lists

DELETION
The deletion relation
del(X,L,L1)

Sample program
del(X,[X|Tail],Tail).
del(X,[Y|Tail],[Y|Tail1]) :-

del(X,Tail,Tail1).

15 Symbolic ProgrammingJong C. Park

Some operations on lists

The deletion program is non-deterministic.
?- del(a,[a,b,a,a],L).
L = [b,a,a];
L = [a,b,a];
L = [a,b,a];
no

16 Symbolic ProgrammingJong C. Park

Some operations on lists

The deletion program can be used in the
inverse direction.
?- del(a,L,[1,2,3]).
L = [a,1,2,3];
L = [1,a,2,3];
L = [1,2,a,3];
L = [1,2,3,a];
no

17 Symbolic ProgrammingJong C. Park

Some operations on lists

SUBLIST
Intended behavior
?- sublist([c,d,e],[a,b,c,d,e,f]).
yes
?- sublist([c,e],[a,b,c,d,e,f]).
no

Sample program
sublist(S,L) :-

conc(L1,L2,L),
conc(S,L3,L2).

18 Symbolic ProgrammingJong C. Park

Some operations on lists

The sublist relation can be used to find all
sublists of a given list.
?- sublist(S,[a,b,c]).
S = [];
S = [a];
S = [a,b];
S = [a,b,c];
S = [];
...

19 Symbolic ProgrammingJong C. Park

Some operations on lists

PERMUTATIONS
Intended behavior
?- permutation([a,b,c],P).
P = [a,b,c];
P = [a,c,b];
P = [b,a,c];
...

20 Symbolic ProgrammingJong C. Park

Some operations on lists

Observation
If the first list is empty then the second list must
also be empty.
If the first list is not empty then it has the form
[X|L], and a permutation of such a list can be
constructed by first permuting L for L1 and then
inserting X at any position into L1.

21 Symbolic ProgrammingJong C. Park

Some operations on lists

Sample program
permutation([],[]).
permutation([X|L],P) :-

permutation(L,L1),
insert(X,L1,P).

permutation2([],[]).
permutation2(L,[X|P]) :-

del(X,L,L1),
permutation2(L1,P).

22 Symbolic ProgrammingJong C. Park

Problems

Complete the following programs
last(Item,List) :-

conc(_,[Item],List).

reverse([], []).
reverse([First|Rest],Reversed) :-

reverse(Rest,ReversedRest),
conc(ReversedRest,[First],Reversed).

There are many other ways to reverse a given list.

23 Symbolic ProgrammingJong C. Park

Operator notation

Motivation
Example

2*a+b*c
Is it +(*(2,a),*(b,c)) or *(*(2,+(a,b)),c)?

Precedence
The operator with the highest precedence is
understood as the principal functor of the term.
Which is higher: + or *?

24 Symbolic ProgrammingJong C. Park

Operator notation

A programmer can define his or her
own operators.
peter has information.
floor supports table.

has(peter,information).
supports(floor,table).

25 Symbolic ProgrammingJong C. Park

Operator notation

Directives
:- op(600,xfx,has).

'has' is defined as an operator.
its precedence is 600.
its type is 'xfx', a kind of infix operator.

The operator names are atoms.
The range is fixed, e.g. between 1 and 1200.

26 Symbolic ProgrammingJong C. Park

Operator notation

Operator types
infix operators of three types

xfx, xfy, yfx

prefix operators of two types
fx, fy

postfix operators of two types
xf, yf

27 Symbolic ProgrammingJong C. Park

Operator notation

Precedence of argument
If an argument is enclosed in parentheses

or it is an unstructured object then its
precedence is 0.
If an argument is a structure then its

precedence is equal to the precedence of its
principal functor.

28 Symbolic ProgrammingJong C. Park

Operator notation

'x' and 'y'
'x' represents an argument whose precedence
must be strictly lower than that of the
operator.
'y' represents an argument whose precedence
is lower or equal to that of the operator.

Example
What is the type of '-'?
Is it a - b - c as (a - b) - c, or as a - (b - c)?

yfx if (a-b)-c only
yfy if both
xfy if a-(b-c)
xfx if neither

29 Symbolic ProgrammingJong C. Park

Operator notation

Another example
What is the type of ‘not’?

Is not not p allowed?
fy if yes
fx if no

Predefined operators
Figure 3.8

Example
~(A&B) <===> ~A v ~B

30 Symbolic ProgrammingJong C. Park

Arithmetic

A subset of the predefined operators
can be used for basic arithmetic
operations.

+, -, *, /, **, //, mod
?- X = 1 + 2.
X = 1 + 2.
?- X is 1 + 2.
X = 3.

31 Symbolic ProgrammingJong C. Park

Arithmetic

Arithmetic is also used for
comparison.
?- 277*37 > 10000.
yes
?- born(Name,Year),

Year >= 1980,
Year =< 1990.

>, <, >=, =<, =:=, =\=

32 Symbolic ProgrammingJong C. Park

Arithmetic

Sample interaction
?- 1 + 2 =:= 2 + 1.
yes
?- 1 + 2 = 2 + 1.
no
?- 1 + A = B + 2.
A = 2
B = 1

33 Symbolic ProgrammingJong C. Park

Arithmetic

Example use of arithmetic operations
Greatest Common Divisor (GCD)

If X and Y are equal then D is equal to X.
If X<Y then D is equal to the gcd of X and the
difference Y-X.
If Y<X then do the same as above with X and Y
interchanged.

gcd(X,X,X).
gcd(X,Y,D) :- X<Y, Y1 is Y-X, gcd(X,Y1,D).
gcd(X,Y,D) :- Y<X, gcd(Y,X,D).

34 Symbolic ProgrammingJong C. Park

Arithmetic

Example use of arithmetic operations
Counting items in a list: length(List,N)

If the list is empty then its length is 0.
If the list is not empty then List = [Head|Tail]; so
its length is equal to 1 plus the length of Tail.

length([], 0).
length([_|Tail],N) :-

length(Tail,N1),
N is 1+N1.

35 Symbolic ProgrammingJong C. Park

Summary

List
Head, Tail

Common operations on lists
list membership
concatenation
adding an item
deleting an item
sublist

Operator notation
infix, prefix and suffix operators
precedence of an operator

