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Using Structures

Example Programs
Retrieving structured information from a 
database
Doing data abstraction
Simulating a non-deterministic 
automaton
Travel agent
The eight queens problem
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Retrieving structured information

A database can be represented in Prolog 
as a set of facts. 
family(

person(tom,fox,date(7,may,1960),works(bbc,15200)),
person(ann,fox,date(9,may,1961),unemployed),
[person(pat,fox,date(5,may,1983),unemployed),
person(jim,fox,date(5,may,1983),unemployed)]).

...

...

...
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Retrieving structured information

Sample queries
?- family(person(_,armstrong,_,_),_,_).

Do we have an Armstrong family?

?- family(_,_,[_,_,_]).
Is there a family with exactly three children?

?- family(_,person(Name,Surname,_,_),[_,_,_|_]).
Show the wife’s full name whose family has at least 
three children.
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Retrieving structured information

A set of procedures defined as a utility
husband(X) :- family(X,_,_).
wife(X) :- family(_,X,_).
child(X) :- family(_,_,Children), member(X,Children). 

exists(Person) :- husband(Person); 
wife(Person); 
child(Person).

dateofbirth(person(_,_,Date,_),Date).
salary(person(_,_,_,works(_,S)),S).
salary(person(_,_,_,unemployed),0).
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Retrieving structured information

Sample queries to the database
?- exists(person(Name,Surname,_,_)).
?- child(X),dateofbirth(X,date(_,_,2000)).
?- wife(person(Name,Surname,_,works(_,_))).

?- exists(person(Name,Surname,date(_,_,Year), 
unemployed)),Year < 1973.

?- exists(Person),dateofbirth(Person,date(_,_,Year)), 
Year < 1960, salary(Person,Salary), Salary < 8000.

?- family(person(_,Name,_,_),_,[_,_,_|_]).
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Retrieving structured information

Total income of a family
total(List_of_people, Sum_of_their_salaries)

total([ ],0).
total([Person|List],Sum) :-

salary(Person,S),
total(List,Rest),
Sum is S + Rest.

?- family(Husband,Wife,Children),
total([Husband,Wife|Children],Income).



8 Symbolic ProgrammingJong C. Park

Doing data abstraction

Data abstraction
A process of organizing various pieces of 
information into natural units, structuring the 
information into a conceptually meaningful 
form.
All the details of implementing such a 
structure should be invisible to the user of the 
structure.  



9 Symbolic ProgrammingJong C. Park

Doing data abstraction

Example selectors
FoxFamily = family(person(tom,fox,_,_),_,_).
% selector_relation(Object,Component_selected)
husband(family(Husband,_,_),Husband).
wife(family(_,Wife,_),Wife).
children(family(_,_,ChildList),ChildList).
secondchild(Family,Second) :-

children(Family,[_,Second|_]). 
firstname(person(Name,_,_,_),Name).
surname(person(_,Surname,_,_),Surname).

born(person(_,_,Date,_),Date).
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Doing data abstraction

Example use of selectors
?- firstname(Person1,tom),

surname(Person1,fox),
firstname(Person2,jim),
surname(Person2,fox),
husband(Family,Person1),
secondchild(Family,Person2). 
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Simulating an NFA

Example NFA
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Simulating an NFA

Automaton specification in Prolog
a unary relation final(S)
a three-argument relation trans(S1,X,S2)
a binary relation silent(S1,S2)

final(s3).
trans(s1,a,s1). trans(s1,a,s2).
trans(s1,b,s1). trans(s2,b,s3).
trans(s3,b,s4).
silent(s2,s4). silent(s3,s4).
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Simulating an NFA

The simulator is programmed as a binary 
relation accepts(State,String).
accepts(State,[ ]) :-

final(State).
accepts(State,[X|Rest]) :-

trans(State,X,State1),
accepts(State1,Rest).

accepts(State,String) :-
silent(State,State1),
accepts(State1,String).
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Simulating an NFA

Example use of the simulator
?- accepts(s1,[a,a,a,b]).
yes
?- accepts(S,[a,b]).
S = s1;
S = s3

?- accepts(s1,[X1,X2,X3]).
X1 = a
X2 = a
X3 = b;
X1 = b
X2 = a
X3 = b;
no
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Travel Agent
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Travel Agent

Advice on planning air travel
What days of the week is there a direct 
evening flight from Ljubljana to London?
How can I get from Ljubljana to Edinburgh on 
Thursday?
I have to visit Milan, Ljubljana 
and Zurich, starting from 
London on Tuesday and 
returning to London on Friday. 
In what sequence should I 
visit them? 
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Travel Agent

Sample database with the flight 
information

timetable(Place1,Place2,ListOfFlights)
ListOfFlights

a list of structured items of the form:
DepartureTime/ArrivalTime/FlightNumber/ListOfDays

ListOfDays
either a list of weekdays or the atom alldays

Example
timetable(london, edinburgh, 
[9:40/10:50/ba4733/alldays, 
19:40/20:50/ba4833/[mo,tu,we,th,fr,su]]). 
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Travel Agent

Exact routes between two given cities on a 
given day of the week:
route(Place1,Place2,Day,Route)    

Route is a sequence of flights such that:
the start point of the route is Place1;
the end point is Place2;
all the flights are on the same day of the week, Day;
all the flights in Route are in the timetable relation;
and there is enough time for transfer between flights.
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Travel Agent

The route is represented as a list of 
structured objects of the form:
From / To / FlightNumber / Departure_time

Auxiliary predicates
flight(Place1,Place2,Day,FlightNum,DepTime,ArrTime)
deptime(Route,Time)
transfer(Time1,Time2)
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Travel Agent

Encoding the route relation
Direct flight connection

If there is a direct flight between Place1 and Place2 
then the route consists of this flight only: 
route(Place1,Place2,Day, [Place1/Place2/Fnum/Dep]) :-

flight(Place1,Place2,Day,Fnum,Dep,Arr).
Indirect flight connection

The route between P1 and P2 consists of the first 
flight, from P1 to some intermediate place P3, 
followed by a route between P3 to P2.
There is also enough time for transfer.

route(P1,P2,Day,[P1/P3/Fnum1/Dep1|RestRoute]) :-
route(P3,P2,Day,RestRoute), 
flight(P1,P3,Day,Fnum1,Dep1,Arr1),
deptime(RestRoute,Dep2), transfer(Arr1,Dep2). 
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Travel Agent

A Flight Route Planner
Figure 4.5
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Travel Agent

Sample questions
?- flight(ljubljana,london,Day,_,DeptHour:_,_), 

DeptHour >= 18.
Day = mo;
Day = we;
...
?- route(ljubljana,edinburgh,th,R).
R = [ljubljana / zurich / jp322 / 11:30, zurich / london / 

sr806 / 16:10, london /edinburgh / ba4822 / 18:40]
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Travel Agent

Sample question
?- permutation([milan,ljubljana,zurich],[City1,City2,City3]),   

flight(london,City1,tu,FN1,_,_), 
flight(City1,City2,we,FN2,_,_), 
flight(CIty2,City3,th,FN3,_,_), 
flight(City3,london,fr,FN4,_,_). 

City1 = milan
City2 = zurich
City3 = ljubljana
FN1 = ba510
FN2 = sr621
FN3 = jp323
FN4 = jp211
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Travel Agent

Indefinite loops
?- route(moscow,edinburgh,mo,R).

when the route cannot be found in the time table.

How do we address this problem?
Use conc to limit the number of flights to take.

?- conc(R,_,[_,_,_,_]), 
route(moscow,edinburgh,mo,R).

no
Any other ways?

alternatives
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The eight queens problem

The problem
to place eight queens on the empty 
chessboard in such a way that no queen 
attacks any other queen. 

The solution
programmed as a unary predicate 
solution(Pos), which is true iff Pos represents 
a position with eight queens that do not 
attack each other. 
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The eight queens problem

Program 1
Figure 4.6
Find a list of the form [1/Y1,2/Y2,...,8/Y8].
The solution relation has two cases.

The list of queens is empty.
The list of queens is non-empty: [X/Y|Others]

where there must be no attack between the queens in 
the list Others; X and Y must be integers between 1 
and 8; and a queen at square X/Y must not attack 
any of the queens in the list Others. 
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The eight queens problem

Program 1
Figure 4.7

solution([X/Y|Others]) :-
solution(Others),
member(Y,[1,2,3,4,5,6,7,8]),
noattack(X/Y,Others).

noattack(_,[ ]).
noattack(X/Y,[X1/Y1|Others]) :-

Y =\= Y1, Y1 - Y =\= X1-X, Y1-Y =\= X-X1, 
noattack(X/Y,Others).
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The eight queens problem

Program 2
Omit the X-coordinates: [Y1,Y2,...,Y8]
The solution is then a permutation of the list 
[1,2,3,4,5,6,7,8]. 

solution(S) :-
permutation([1,2,3,4,5,6,7,8],S),
safe(S). 
Figure 4.9

safe([ ]).
safe([Queen|Others]) :- safe(Others), 

noattack(Queen,Others).
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The eight queens problem

Program 3
Figure 4.11
Each queen must be placed in a different 
column, a different row, a different upward 
and a different downward diagonal: x, y, u, v 
where u = x - y and v = x + y. 
Select the position of the first queen, delete 
the corresponding items from the four 
domains, and then use the rest of the domain 
for placing the rest of the queens. 
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Summary

Prolog database
a set of Prolog facts

Data abstraction
easier use of complex data structures
clear programs


