
CS370

Symbolic Programming
Declarative Programming

LECTURE 6: Using Structures

Symbolic Programming
Declarative Programming

LECTURE 6: Using Structures

Jong C. Park
park@cs.kaist.ac.kr

Computer Science Department
Korea Advanced Institute of Science and Technology

http://nlp.kaist.ac.kr/~cs370

2 Symbolic ProgrammingJong C. Park

Using Structures

Example Programs
Retrieving structured information from a
database
Doing data abstraction
Simulating a non-deterministic
automaton
Travel agent
The eight queens problem

3 Symbolic ProgrammingJong C. Park

Retrieving structured information

A database can be represented in Prolog
as a set of facts.
family(

person(tom,fox,date(7,may,1960),works(bbc,15200)),
person(ann,fox,date(9,may,1961),unemployed),
[person(pat,fox,date(5,may,1983),unemployed),
person(jim,fox,date(5,may,1983),unemployed)]).

...

...

...

4 Symbolic ProgrammingJong C. Park

Retrieving structured information

Sample queries
?- family(person(_,armstrong,_,_),_,_).

Do we have an Armstrong family?

?- family(_,_,[_,_,_]).
Is there a family with exactly three children?

?- family(_,person(Name,Surname,_,_),[_,_,_|_]).
Show the wife’s full name whose family has at least
three children.

5 Symbolic ProgrammingJong C. Park

Retrieving structured information

A set of procedures defined as a utility
husband(X) :- family(X,_,_).
wife(X) :- family(_,X,_).
child(X) :- family(_,_,Children), member(X,Children).

exists(Person) :- husband(Person);
wife(Person);
child(Person).

dateofbirth(person(_,_,Date,_),Date).
salary(person(_,_,_,works(_,S)),S).
salary(person(_,_,_,unemployed),0).

6 Symbolic ProgrammingJong C. Park

Retrieving structured information

Sample queries to the database
?- exists(person(Name,Surname,_,_)).
?- child(X),dateofbirth(X,date(_,_,2000)).
?- wife(person(Name,Surname,_,works(_,_))).

?- exists(person(Name,Surname,date(_,_,Year),
unemployed)),Year < 1973.

?- exists(Person),dateofbirth(Person,date(_,_,Year)),
Year < 1960, salary(Person,Salary), Salary < 8000.

?- family(person(_,Name,_,_),_,[_,_,_|_]).

7 Symbolic ProgrammingJong C. Park

Retrieving structured information

Total income of a family
total(List_of_people, Sum_of_their_salaries)

total([],0).
total([Person|List],Sum) :-

salary(Person,S),
total(List,Rest),
Sum is S + Rest.

?- family(Husband,Wife,Children),
total([Husband,Wife|Children],Income).

8 Symbolic ProgrammingJong C. Park

Doing data abstraction

Data abstraction
A process of organizing various pieces of
information into natural units, structuring the
information into a conceptually meaningful
form.
All the details of implementing such a
structure should be invisible to the user of the
structure.

9 Symbolic ProgrammingJong C. Park

Doing data abstraction

Example selectors
FoxFamily = family(person(tom,fox,_,_),_,_).
% selector_relation(Object,Component_selected)
husband(family(Husband,_,_),Husband).
wife(family(_,Wife,_),Wife).
children(family(_,_,ChildList),ChildList).
secondchild(Family,Second) :-

children(Family,[_,Second|_]).
firstname(person(Name,_,_,_),Name).
surname(person(_,Surname,_,_),Surname).

born(person(_,_,Date,_),Date).

10 Symbolic ProgrammingJong C. Park

Doing data abstraction

Example use of selectors
?- firstname(Person1,tom),

surname(Person1,fox),
firstname(Person2,jim),
surname(Person2,fox),
husband(Family,Person1),
secondchild(Family,Person2).

11 Symbolic ProgrammingJong C. Park

Simulating an NFA

Example NFA

12 Symbolic ProgrammingJong C. Park

Simulating an NFA

Automaton specification in Prolog
a unary relation final(S)
a three-argument relation trans(S1,X,S2)
a binary relation silent(S1,S2)

final(s3).
trans(s1,a,s1). trans(s1,a,s2).
trans(s1,b,s1). trans(s2,b,s3).
trans(s3,b,s4).
silent(s2,s4). silent(s3,s4).

13 Symbolic ProgrammingJong C. Park

Simulating an NFA

The simulator is programmed as a binary
relation accepts(State,String).
accepts(State,[]) :-

final(State).
accepts(State,[X|Rest]) :-

trans(State,X,State1),
accepts(State1,Rest).

accepts(State,String) :-
silent(State,State1),
accepts(State1,String).

14 Symbolic ProgrammingJong C. Park

Simulating an NFA

Example use of the simulator
?- accepts(s1,[a,a,a,b]).
yes
?- accepts(S,[a,b]).
S = s1;
S = s3

?- accepts(s1,[X1,X2,X3]).
X1 = a
X2 = a
X3 = b;
X1 = b
X2 = a
X3 = b;
no

15 Symbolic ProgrammingJong C. Park

Travel Agent

16 Symbolic ProgrammingJong C. Park

Travel Agent

Advice on planning air travel
What days of the week is there a direct
evening flight from Ljubljana to London?
How can I get from Ljubljana to Edinburgh on
Thursday?
I have to visit Milan, Ljubljana
and Zurich, starting from
London on Tuesday and
returning to London on Friday.
In what sequence should I
visit them?

17 Symbolic ProgrammingJong C. Park

Travel Agent

Sample database with the flight
information

timetable(Place1,Place2,ListOfFlights)
ListOfFlights

a list of structured items of the form:
DepartureTime/ArrivalTime/FlightNumber/ListOfDays

ListOfDays
either a list of weekdays or the atom alldays

Example
timetable(london, edinburgh,
[9:40/10:50/ba4733/alldays,
19:40/20:50/ba4833/[mo,tu,we,th,fr,su]]).

18 Symbolic ProgrammingJong C. Park

Travel Agent

Exact routes between two given cities on a
given day of the week:
route(Place1,Place2,Day,Route)

Route is a sequence of flights such that:
the start point of the route is Place1;
the end point is Place2;
all the flights are on the same day of the week, Day;
all the flights in Route are in the timetable relation;
and there is enough time for transfer between flights.

19 Symbolic ProgrammingJong C. Park

Travel Agent

The route is represented as a list of
structured objects of the form:
From / To / FlightNumber / Departure_time

Auxiliary predicates
flight(Place1,Place2,Day,FlightNum,DepTime,ArrTime)
deptime(Route,Time)
transfer(Time1,Time2)

20 Symbolic ProgrammingJong C. Park

Travel Agent

Encoding the route relation
Direct flight connection

If there is a direct flight between Place1 and Place2
then the route consists of this flight only:
route(Place1,Place2,Day, [Place1/Place2/Fnum/Dep]) :-

flight(Place1,Place2,Day,Fnum,Dep,Arr).
Indirect flight connection

The route between P1 and P2 consists of the first
flight, from P1 to some intermediate place P3,
followed by a route between P3 to P2.
There is also enough time for transfer.

route(P1,P2,Day,[P1/P3/Fnum1/Dep1|RestRoute]) :-
route(P3,P2,Day,RestRoute),
flight(P1,P3,Day,Fnum1,Dep1,Arr1),
deptime(RestRoute,Dep2), transfer(Arr1,Dep2).

21 Symbolic ProgrammingJong C. Park

Travel Agent

A Flight Route Planner
Figure 4.5

22 Symbolic ProgrammingJong C. Park

Travel Agent

Sample questions
?- flight(ljubljana,london,Day,_,DeptHour:_,_),

DeptHour >= 18.
Day = mo;
Day = we;
...
?- route(ljubljana,edinburgh,th,R).
R = [ljubljana / zurich / jp322 / 11:30, zurich / london /

sr806 / 16:10, london /edinburgh / ba4822 / 18:40]

23 Symbolic ProgrammingJong C. Park

Travel Agent

Sample question
?- permutation([milan,ljubljana,zurich],[City1,City2,City3]),

flight(london,City1,tu,FN1,_,_),
flight(City1,City2,we,FN2,_,_),
flight(CIty2,City3,th,FN3,_,_),
flight(City3,london,fr,FN4,_,_).

City1 = milan
City2 = zurich
City3 = ljubljana
FN1 = ba510
FN2 = sr621
FN3 = jp323
FN4 = jp211

24 Symbolic ProgrammingJong C. Park

Travel Agent

Indefinite loops
?- route(moscow,edinburgh,mo,R).

when the route cannot be found in the time table.

How do we address this problem?
Use conc to limit the number of flights to take.

?- conc(R,_,[_,_,_,_]),
route(moscow,edinburgh,mo,R).

no
Any other ways?

alternatives

25 Symbolic ProgrammingJong C. Park

The eight queens problem

The problem
to place eight queens on the empty
chessboard in such a way that no queen
attacks any other queen.

The solution
programmed as a unary predicate
solution(Pos), which is true iff Pos represents
a position with eight queens that do not
attack each other.

26 Symbolic ProgrammingJong C. Park

The eight queens problem

Program 1
Figure 4.6
Find a list of the form [1/Y1,2/Y2,...,8/Y8].
The solution relation has two cases.

The list of queens is empty.
The list of queens is non-empty: [X/Y|Others]

where there must be no attack between the queens in
the list Others; X and Y must be integers between 1
and 8; and a queen at square X/Y must not attack
any of the queens in the list Others.

27 Symbolic ProgrammingJong C. Park

The eight queens problem

Program 1
Figure 4.7

solution([X/Y|Others]) :-
solution(Others),
member(Y,[1,2,3,4,5,6,7,8]),
noattack(X/Y,Others).

noattack(_,[]).
noattack(X/Y,[X1/Y1|Others]) :-

Y =\= Y1, Y1 - Y =\= X1-X, Y1-Y =\= X-X1,
noattack(X/Y,Others).

28 Symbolic ProgrammingJong C. Park

The eight queens problem

Program 2
Omit the X-coordinates: [Y1,Y2,...,Y8]
The solution is then a permutation of the list
[1,2,3,4,5,6,7,8].

solution(S) :-
permutation([1,2,3,4,5,6,7,8],S),
safe(S).
Figure 4.9

safe([]).
safe([Queen|Others]) :- safe(Others),

noattack(Queen,Others).

29 Symbolic ProgrammingJong C. Park

The eight queens problem

Program 3
Figure 4.11
Each queen must be placed in a different
column, a different row, a different upward
and a different downward diagonal: x, y, u, v
where u = x - y and v = x + y.
Select the position of the first queen, delete
the corresponding items from the four
domains, and then use the rest of the domain
for placing the rest of the queens.

30 Symbolic ProgrammingJong C. Park

Summary

Prolog database
a set of Prolog facts

Data abstraction
easier use of complex data structures
clear programs

