10.33.5 Examples

Here are two example constraint solvers written in CHR.

  1. The program below defines a solver with one constraint, leq/2, which is a less-than-or-equal constraint, also known as a partial order constraint.
              :- module(leq,[leq/2]).
              :- use_module(library(chr)).
              
              :- chr_constraint leq/2.
              reflexivity   leq(X,X) <=> true.
              antisymmetry  leq(X,Y), leq(Y,X) <=> X = Y.
              idempotence   leq(X,Y) \ leq(X,Y) <=> true.
              transitivity  leq(X,Y), leq(Y,Z) ==> leq(X,Z).
         

    When the above program is loaded, you can call the leq/2 constraint in a query, e.g.:

              | ?- leq(X,Y), leq(Y,Z).
              leq(X,Y),
              leq(X,Z),
              leq(Y,Z) ?
         
  2. The program below implements a simple finite domain constraint solver.
              :- module(dom,[dom/2]).
              :- use_module(library(chr)).
              :- use_module(library(sets), [intersection/3]).
              
              :- chr_constraint dom(?int,+list(int)).
              :- chr_type list(T) ---> [] ; [T|list(T)].
              
              dom(X,[]) <=> fail.
              dom(X,[Y]) <=> X = Y.
              dom(X,L) <=> nonvar(X) | memberchk(X,L).
              dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).
         

    When the above program is loaded, you can call the dom/2 constraint in a query, e.g.:

              | ?- dom(A,[1,2,3]), dom(A,[3,4,5]).
              A = 3
         

Send feedback on this subject.